Quantum Science Seminar. April 2020

Trapped-ion quantum computing: A Coherent Control Problem

Roee Ozeri

Weizmann Institute of Science

Laser-cooled Crystals of trapped atomic ions

screu

guage-pin hole resistors

Trap by NIST

Trap made by Sandia

Separation of few μm

Temperature few μK

Interface with qubit using lasers or microwaves

 $|1\rangle$

 $|0\rangle$

Qubit encoded in internal levels of ion

Trapped ion interaction with Radiation

Coupling between the two qubit levels using EM radiation.

For a single ion: $H(t) = H_0 + V(t)$

$$H_0 = \frac{1}{2}\hbar\omega_0\hat{\sigma}_z + \hbar\omega_m(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}) \quad \text{ and } \quad V(t) = \hbar\Omega_0(\hat{\sigma}^+ + \hat{\sigma}^-)\cos(\mathbf{k}\hat{x} - \omega t + \phi)$$

Where: $\hat{\sigma}_{+} = |\uparrow\rangle\langle\downarrow|$; $\hat{\sigma}_{-} = |\downarrow\rangle\langle\uparrow|$

$$k\hat{x} = kx_{eq} + kx_0(\hat{a}^{\dagger} + \hat{a}) \equiv kx_{eq} + \eta(\hat{a}^{\dagger} + \hat{a}) \qquad x_0 = \sqrt{\frac{\hbar}{2M\omega_m}}$$

Trapped ion interaction with Radiation

In the interaction representation and within the Rotating Wave Appr. (RWA)

$$H_{int}(t) = \hbar \Omega_0 / 2\hat{\sigma}_+ \exp(i\eta (\hat{a}e^{-i\omega_m t} + \hat{a}^{\dagger}e^{i\omega_m t}))e^{i(kx_{eq} + \phi - \delta t)} + H.C.$$

When $\delta = s\omega_m$, only $|\downarrow, n\rangle$ and $|\uparrow, n + s\rangle$ will be resonantly coupled (another RWA).

$$\begin{array}{ll} \underline{\text{Carrier:}} \ \mathbf{s} = \mathbf{0} & \hat{H}_{int} = \frac{\hbar\Omega_0}{2} D_{n,n} (\hat{\sigma}_+ e^{i\phi} + \hat{\sigma}_- e^{-i\phi}) \\ \\ \underline{\text{Red sideband (RSB):}} \ \mathbf{s} = -\mathbf{1} & \hat{H}_{int} = \frac{\hbar\Omega_0}{2} D_{n-1,n} (\hat{a}\hat{\sigma}_+ e^{i\phi} + \hat{a}^{\dagger}\hat{\sigma}_- e^{-i\phi}) \end{array}$$

Blue sideband (BSB):
$$s = +1$$
 $\hat{H}_{int} = \frac{\hbar\Omega_0}{2}D_{n+1,n}(\hat{a}^{\dagger}\hat{\sigma}_+e^{i\phi}+\hat{a}\hat{\sigma}_-e^{-i\phi})$

Sideband Spectroscopy

Sideband cooling to the ground state

Pulse on red sideband together with optical-pumping

$$\langle n \rangle < 0.05$$
 T $\approx 2 \,\mu$ K

Single qubit gates – Carrier rotations

Tom Manovitz; MSc thesis (2016)

Randomized benchmarking

 $\epsilon \cong 10^{-6}$

 $\epsilon \cong 10^{-4}$

Lucas, Oxford

Entanglement in trapped ion systems

Mølmer-Sørensen gates

Use a bi-chromatic drive:

$$\omega_{\pm} = \omega_0 \pm (\nu + \xi_0)$$

 $|\uparrow\uparrow,n\rangle$ $\begin{array}{l} \uparrow\downarrow,n+1\rangle\\ \uparrow\downarrow,n\rangle\\ \uparrow\downarrow,n-1\rangle \end{array}$ $\downarrow\uparrow, n+1\rangle$ $\downarrow\uparrow, n\rangle$

A. Sørensen & K. Mølmer, PRL (1999) & PRA (2000)

 ω_{\perp}

 $\downarrow\downarrow,n\rangle$

Mølmer – Sørensen gate

Bi-chromatic drive:

 $\omega_{\pm} = \omega_{SD} \pm (\nu + \xi_0) \qquad \qquad \widehat{U}(t;0) = e^{-iA(t)\frac{\widehat{\sigma}_y \otimes \widehat{\sigma}_y}{2}} e^{-iF(t)\hat{J}_y \hat{x}} e^{-iG(t)\hat{J}_y \hat{p}}$

 $|\downarrow\downarrow,n\rangle$

MS gate: $A(T) = \pi/2$, F(T) = G(T) = 0

A. Sørensen & K. Mølmer, PRL (1999) & PRA (2000)

Laser-driven entanglement

$$\widehat{U}_{MS}(T;0)|SS\rangle = \frac{|SS\rangle - i|DD\rangle}{\sqrt{2}}$$

Great, but sensitive to errors in gate parameters: Time, trap frequency, laser detuning, laser intensity

Benhelm et. al. Nat. Phys. 4 463 (2008)

Akerman, Navon, Kotler, Glickman, RO, NJP 17, 113060 (2015)

Quantum Engineering of Robust Gates

Multi-tone Mølmer – Sørensen gates

$$\omega_{\pm,i} = \omega_0 \pm (\nu + n_i \xi_0)$$

 r_i - amplitudes

Valid gate if:

$$\sum_{i=1}^{N} \frac{r_i^2}{n_i} = 1 \qquad \qquad \xi_0 = 2\eta\Omega = \frac{2\pi}{T}$$
$$A(T) = \pi/2 \qquad \qquad F(T) = G(T) = 0$$

Multi-tone Mølmer – Sørensen gates

<u>Continuous family of gates:</u> $\{n_i\}_{i=1}^N$ $\{r_i\}_{i=1}^N$

$$\hat{U}(t;0) = e^{-iA(t)\hat{J}_y^2}e^{-iF(t)\hat{J}_y\hat{x}}e^{-iG(t)\hat{J}_y\hat{p}}$$

- Choose your favorite shape through phase-space
- Extra degrees of freedom:

Overdetermined system; add constraints

Optimization of Quantum Gates

Analytic expression for gate fidelity:

$$F_g = \frac{3 + e^{-4\left(\bar{n} + \frac{1}{2}\right)\frac{F^2 + G^2}{2}}}{8} + \frac{e^{-\left(\bar{n} + \frac{1}{2}\right)\frac{F^2 + G^2}{2}}\sin\left(A + \frac{FG}{2}\right)}{2}$$

Null errors order-by-order:

$$F_g = 1 + \frac{1}{2} \frac{\partial^2 F_g(\{n_i, r_i, \phi_i\}_{i=1}^N)}{\partial \alpha^2} \Big|_{\alpha_{ideal}} \delta \alpha^2 + \cdots$$

- MS - Cardioid

Gate timing errors – Cardioid gates

Gate fidelity:

Shapira, Shaniv, Manovitz, Akerman, RO, Phys. Rev. Lett. 121, 180502 (2018)

Trap frequency errors – CarNu gates

Trap frequency and timing errors: $\nu_0 + \delta \nu$ $T = T_0 + \delta T$

Shapira, Shaniv, Manovitz, Akerman, RO, Phys. Rev. Lett. 121, 180502 (2018)

Two-qubit gate fidelity

NIST

Oxford

Entanglement gates in multi-ion crystals

- Multiple modes of motion: choose one
- Slower because of heavier effective weight
- Increasing laser-power: off-resonance coupling to other modes or carrier transition
- Still works for a small number of ions

Small Scale Quantum computers

LETTER

doi:10.1038/nature18648

Demonstration of a small programmable quantum computer with atomic qubits

S. Debnath¹, N. M. Linke¹, C. Figgatt¹, K. A. Landsman¹, K. Wright¹ & C. Monroe^{1,2,3}

Quantum Algorithms demonstrated:

- Quantum Chemistry Calculations Phys. Rev. X (2018)
- Grover Search algorithm *Nature Comm. (2017)*
- Topological Quantum error-correction *Science (2014)*
- Shor Factoring Algorithm *Science (2016)*
- Many more...

Architectures for scaling up: #1

Shuttling ions between different trapping regions

Kielpinski, Monroe and Wineland Nature 417, 709 (2002)

Architectures for scaling up: # 2

Photon interconnects between elementary Logic units (ELU's)

Hong-Ou-Mandel interference

Monroe et. al. Phys. Rev. A 89, 022317 (2014)

NISQ approach: Large Crystals

Monroe, JQI

10 's -100's ions

- Exponential speed-up for quantum computing ~ 60 ions sufficient, provided high fidelity
- Quantum simulators
- Can we stretch previous ideas to larger ion-numbers?

NISQ approach: Large Crystals

Challenges:

- 10's 100's of motional modes; spectral crowding
- With 2-qubit gates many concatenated operations are required (N³ in Shor's)
- In the MS gate and its variants the gate time T $\propto 1/\sqrt{N}$
- Infidelity, $F_g \sim 1 \frac{T}{T_2}N^2$
- Increasing laser-power: off-resonance coupling

Possible remedy: parallel gates

Use Multiple modes of motion

J. I. Cirac & P. Zoller, PRL 74, 4091 (1995). [3] T. Monz et al. PRL 106, 130506 (2011).

Multi-tone MS

• The Hamiltonian generalizes: $\widehat{H} = \hbar \sum_{j=1}^{N} \widehat{f}_{y,j} (f_j(t)\widehat{x}_j + g_j(t)\widehat{p}_j), \quad \widehat{f}_{y,j} \equiv \frac{\sqrt{N}}{2} v_j \cdot \sigma_y$ Normal-mode vector

• With:
$$f_j(t) + ig_j(t) = \frac{2\sqrt{2}}{\sqrt{N}} \eta_j \Omega \sum_{i=1}^M r_i \cos(\omega_i t + \phi_i) e^{i\nu_j t}$$

Normal-mode frequency

• Similar unitary:

$$\widehat{U}(t;0) = \prod_{j=1}^{N} e^{-iA_j(t)\hat{J}_{y,j}^2} e^{-iF_j(t)\hat{J}_{y,j}\hat{x}_j} e^{-iG_j(t)\hat{J}_{y,j}\hat{p}_j}$$

Same phase-space intuition

Constraints – phase space closure

•Motion closes in all phase-spaces at the gate time. Linear constraint

 $F_j(T) = G_j(T) = 0$ for all j = 1, ..., N.

•Geometric phases for all-to-all coupling:

Quadratic constraint

The quadratic constraint optimization problem is NP-Hard

Gate optimization results - 6 ions, axial modes

Blue – Multi-mode gate, Yellow – regular MS, Red – multi-tone adiabatic

Gate simulation results – 6 ions, axial modes

22 tone pairs, robust to: timing errors, normal-mode frequency drifts, heating

Gate simulation results – 12 ions, axial modes

• $T \approx 6 \frac{2\pi}{v_1}$, 41 tone pairs, robust to: timing errors, normal-mode frequency drifts, heating. Resulting fidelity is 0.9987.

Experimental implementation of similar ideas

C. Figgatt et al. Nature 572, 368 (2019). Y. Lu et al. Nature 572, 363 (2019)

In Summary

• Trapped-ion quantum computers:

High-fidelity quantum gates Small universal quantum machines

Increasing to larger ion-qubit numbers:

Scale-up architectures: interconnected small modules

Large-ion crystals: Coherent control optimization problem - hard, yet possible

• Work towards ~100 qubit trapped-ion universal quantum computers

The Weizmann trapped ion team

ISRAEL SCIENCE FOUNDATION

European Research Council