

The maximum refractive index of an atomic medium

Darrick Chang ICFO – The Institute of Photonic Sciences Barcelona, Spain

Quantum Science Seminar April 30, 2020

FUNDACIÓN RAMÓN ARECES

Acknowledgments

Francesco Andreoli PhD Student

Antoine Browaeys Institut d'Optique

Michael Gullans Princeton

Alex High Univ. Chicago

Motivation

 Thousands of optical materials... why is refractive index so always of order unity?

Material	n
Fused silica	1.5
Diamond	2.4
Silicon	3.4
GaAs	3.9
Germanium	4.0

Typical, positive index materials (Telecom/visible wavelengths)

- **Universal physics** governing the value of *n*?
- Profound technological implications if $n \gg 1$ is possible

Ruling out possibilities

• We typically work with materials away from their natural electronic resonances?

Index of silicon vs. wavelength

Index of silicon vs. temperature J. Appl. Phys. 99, 063516 (2006)

Bottom-up approach

• Minimal model: a "material" near resonance, free of chemistry and solid-state interactions?

Ensemble of well-separated, stationary atoms

Extraordinary response compared to physical size!

Index of an atomic medium

Single atom

• Ensemble of atoms

Index of an atomic ensemble

Drude-Lorentz / Maxwell-Bloch equations:

$$n_{\rm MB}(\omega)^2 = \epsilon_{MB}(\omega) \sim 1 + \alpha(\omega) \frac{N_{\rm atoms}}{V}$$

Problem!

What's missing in the textbook answer?

$$n_{\rm MB}(\omega)^2 \sim 1 + \alpha(\omega) \frac{N_{\rm atoms}}{V}$$

- Hints:
 - Doesn't depend on microscopic configuration
 - Multiplicative (every atom does the same thing)
- **Missing:** wave interference and multiple scattering
- Light propagation through a random medium is complex!

Outgoing "speckle" intensity pattern

• These features tend to get suppressed for dilute, moving atoms

Another approach: coupled dipoles

Collection of (classical) polarizable dipoles:

$$E_{in}(r,\omega)e^{-i\omega t}$$
Incident field
$$p_{j}(\omega)e^{-i\omega t}$$
Light detector
Multiple scattering
$$Light detector$$
Total field:
$$E(r,\omega) = E_{in}(r,\omega) + \sum_{j} G(r,r_{j},\omega) p_{j}(\omega)$$

In free space:

$$G(r, 0, \omega) = e^{ikr} \left[\frac{k^2}{r} (\hat{n} \times \hat{p}) \times \hat{n} + (3\hat{n}(\hat{n} \cdot \hat{p}) - \hat{p}) \left(\frac{1}{r^3} - \frac{ik}{r^2} \right) \right]$$
$$k = \omega/c$$

• Solve for dipoles: $p_i = \alpha(\omega)E(r_i, \omega) = E_{in}(r_i, \omega) + \sum_i G(r_i, r_j, \omega)p_j$

• Quantum version?

Optical properties of dense atomic gases

- Significant body of work already on dense atomic gases
- **Theory** J. Ruostekoski, S. Yelin, M. Fleischhauer, J.-J. Greffet, A.M. Rey, S.E. Skipetrov, T. Wellens, O. Romero-Isart...

Experiment A. Browaeys, R. Kaiser, C.S. Adams, J. Ye, J. Beugnon, ...

- General agreement that one must go beyond Maxwell-Bloch equations
 - Including observations of smaller optical response
- But a clear-cut answer is still elusive!

Challenges of coupled dipole approach:

- Number of equations $\propto N_{\rm atoms}$
- Too much information!

Lorentz-Lorenz model

- Famous approximate model for multiple scattering: Lorentz-Lorenz
- Atom j sits in a small shell of vacuum, surrounded by a smooth index provided by other atoms

Lorentz-Lorenz still seems insufficient for near-resonant atoms

$$n_{LL}(\omega) = n_{MB}(\omega + N_{\text{atoms}}\lambda^3/8\pi^2 V)$$

Questions?

Numerical approach

• Conceptual idea:

 $E_{out} = t(\omega)E_{in} \sim e^{i(\omega/c)nL}E_{in}$

Numerics (disordered system): y/λ₀
 -10

Up to $N_{atoms} \sim 3 \times 10^4$ atoms randomly distributed Averaging over configurations

• Focused Gaussian input ($w_0 < R_{cyl}$) to avoid diffraction effects

Numerical approach

- Solve coupled dipole equations (Gaussian) $E(r, \omega) = E_{in}(r, \omega) + \sum_{i} G(r, r_{j}, \omega) p_{j}(\omega)$
- Point-by-point field re-construction:
 - Time-consuming, and contains complex "speckle" pattern
- Project transmitted field back into the Gaussian mode

$$t \sim 1 + i \left(\frac{\lambda_0^2}{w_0^2}\right) \sum_j \frac{E_{in}^*(r_j)}{E_{in,\max}} p_j \sim e^{ik_0 nL}$$

Numerical results

• Clear deviation from MB equations for $N_{\rm atoms}/\lambda^3 > 10^2$

Scale invariance

Key points:

- Invariant rescaled spectrum $n(\omega \lambda^3 / \Gamma_0 N_{atoms})$ at high densities
- Maximum index saturates to a "real-life" value of $n \approx 1.7!!$
- Saturation occurs at densities $\sim 10^8$ times less dilute than a solid

A simple theory: two atoms

• Dipoles strongly interact via their near fields

 $G(r_1, r_2) \sim 1/r^3$ $r \ll \lambda_{\rm eg}$

• Symmetric and anti-symmetric normal modes $|\pm\rangle$

$$\Gamma_{+} \approx 2\Gamma_{0}$$

$$\Gamma_{-} \approx \Gamma_{0} (r/\lambda_{eg})^{2}$$

Dicke sub/superradiance

 $\Delta \omega_{+} \sim \pm \Gamma_0 (\lambda_{eg}/r)^3 \Delta \omega_{-} \sim \mp \Gamma_0 (\lambda_{eg}/r)^3$ Strong frequency shift

A simple theory: two atoms

Many atoms: renormalization group

Disordered atomic ensemble:

"Strong disorder renormalization group (RG)"

- Statistically, some pairs are extremely close to each other
 - Interact with each other much more strongly (~ $1/r^3$) than with all other atoms combined

$$G^{(N \times N)} = G_{\text{near-field,pair}}^{(2 \times 2)} + (G - G_{\text{near-field,pair}})^{(N \times N)}$$

Diagonalize these pairs first, replace with non-interacting atoms!

Many atoms: renormalization group

- Eliminate strong near-field interactions, leaving only far-field interactions
- Homogeneous atomic medium is optically equivalent to inhomogeneous medium with resonance distribution $P(\omega)$

Origin of refractive index saturation

• Scale invariance when frequency is rescaled by density, $\omega \rightarrow \omega \lambda^3 / N_{\rm atoms}$

- Universal behavior!
 - "Fixed point" of RG flow
- Amount of broadening directly increases with density

Origin of refractive index saturation

• At most ~ 1 near-resonant atom per cubic wavelength, per bandwidth ~ Γ_0 , regardless of physical density

• Full simulations vs. RG:

Why do conventional theories fail?

- Want to ignore granularity → need to make smooth medium approximation
- Example: Lorentz-Lorenz model

• Renormalization group: single nearest neighbors matter most, due to $\sim 1/r^3$ interaction

A proper smooth medium theory

Use RG to get rid of strong near-field interactions

- Smooth medium approximation now valid!
 - Apply M-B equations to broadened medium $P(\omega_{\text{eff}})$: $n_{\text{MB}}(\omega)^2 \sim 1 + \int d\omega_{\text{eff}} \alpha(\omega - \omega_{\text{eff}}) P(\omega_{\text{eff}}) \frac{N_{\text{atoms}}}{V}$

 $\max n \approx 1.8$

Towards a complete theory of index?

Combined theory of multiple scattering and quantum chemistry?

• Short- or long-range atomic order?

Outlook: other possible implications

- RG as a general tool for multiple scattering in random media?
 - Nonlinear and quantum regimes?
- Quantum technologies based on atom-light interfaces

- Im(n) also reaches a limiting value
 - $D \sim \text{Im}(n)k_0L$ Optical depth

• D sets fundamental error bounds on almost every application

Error ~ 5.8/D for a quantum memory PRL 98, 123601 (2007)

• Bounds on minimum system size and maximum atomic density for high-fidelity quantum technologies?

Outlook: a quantum theory

- Error bounds for applications are derived from quantum Maxwell-Bloch equations
 - Do not include interference and multiple scattering!

Outlook: a quantum theory

• Famous historical example:

Dicke superradiance

Exactly solvable by collective spins

$$\hat{S} = \sum_{j} \sigma_{ge}^{j}$$

Quantum

• One possible approach:

Classical

 $E(r) = E_{in}(r) + \sum G(r, r_j) p_j$

Degrees of freedom: Dipoles p_i

"Spins" $|g_j\rangle$, $|e_j\rangle$

$$\hat{E}(r) = \hat{E}_{\rm in}(r) + \sum_{j} G(r, r_j) \,\hat{\sigma}_{ge}^{j}$$

$$H = -\sum_{i,j} G(r_i, r_j) \sigma_{eg}^i \sigma_{ge}^j$$

Dynamics: p

Total field:

cs:
$$p_i = E_{in}(r_i) + \sum_j G(r_i, r_j) p_j$$

Outlook: a quantum theory

- Can we use interference as a **resource** in applications?
- Optical depth: branching ratio of information

$$D \sim \frac{N_a \Gamma_{1D}}{\Gamma_0}$$

A.A. Svidzinsky et al, PRA 81, 053821 (2010)

Single collective excitation $|\psi\rangle \sim \sum_{j} e^{ik \cdot r_{j}} |e_{j}\rangle$

• Exploiting interference:

Branching ratio
$$\sim \frac{N\Gamma_{1D}}{\Gamma'(N)} \gg D$$

• Quantum memory: Error $\sim e^{-D}$

A. Asenjo Garcia et al, PRX 7, 031024 (2017)

Summary

 Topic of light-matter interactions including multiple scattering is a rich and exciting frontier!

