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Motivation

Material n

Fused silica 1.5

Diamond 2.4

Silicon 3.4

GaAs 3.9

Germanium 4.0

Typical, positive index materials
(Telecom/visible wavelengths)

• Universal physics governing the value of n?

• Thousands of optical materials… why is refractive index so 
always of order unity?

• Profound technological implications if 𝑛 ≫ 1 is possible

𝑛 ∼ 102:

𝑛 ∼ 1

𝑛 ≫ 1

∼ 10 nm

𝜆 → Τ𝜆 𝑛
Reduction of scale



Ruling out possibilities

• We typically work with materials away from their natural 
electronic resonances?

Index of silicon vs. wavelength

• Phonons?

Index of silicon vs. temperature
J. Appl. Phys. 99, 063516 (2006)



Bottom-up approach

• Minimal model: a “material” near resonance, free of chemistry 
and solid-state interactions?

A

Scattering probability ∼
𝜆eg
2

𝐴

• Optical response of a single atom:

Ensemble of well-separated, stationary atoms

𝑔

𝑒

Radiative linewidth Γ0
Resonant wavelength 𝜆𝑒𝑔

• Minimal model of atom:

𝜆𝑒𝑔 ∼ 1 𝜇m, Bohr radius ∼ 0.1 nm

Extraordinary response compared to physical size!



Index of an atomic medium

𝜆eg

𝜆eg

• Single atom

• Ensemble of atoms

𝜆eg

𝜆eg

𝒏 ≫ 𝟏?



Index of an atomic ensemble

• Drude-Lorentz / Maxwell-Bloch equations:

𝑛MB 𝜔 2 = 𝜖𝑀𝐵 𝜔 ∼ 1 + 𝛼(𝜔)
𝑁atoms

𝑉

Τ𝑁atoms𝜆𝑒𝑔
3 𝑉

m
a
x
 𝑛

textbook

real materials

• Problem!

chemistry

cold atoms



What’s missing in the textbook answer?

• Missing: wave interference and multiple scattering

• Hints:

• Doesn’t depend on microscopic configuration

• Multiplicative (every atom does the same thing)

• Light propagation through a random medium is complex!

Outgoing “speckle” intensity pattern

𝑛MB 𝜔 2 ∼ 1 + 𝛼(𝜔)
𝑁atoms

𝑉

• These features tend to get suppressed for dilute, moving atoms



Another approach: coupled dipoles

• Collection of (classical) polarizable dipoles:

Incident field

Multiple scattering

Light detector

𝑝𝑗 𝜔 𝑒−𝑖𝜔𝑡

𝐸𝑖𝑛 𝑟, 𝜔 𝑒−𝑖𝜔𝑡

• Total field: 𝐸 𝑟,𝜔 = 𝐸𝑖𝑛 𝑟, 𝜔 +

𝑗

𝐺 𝑟, 𝑟𝑗 , 𝜔 𝑝𝑗(𝜔)

• In free space:

റ𝑝 𝑟
𝐺 𝑟, 0, 𝜔 = 𝑒𝑖𝑘𝑟

𝑘2

𝑟
ො𝑛 × Ƹ𝑝 × ො𝑛 + 3ො𝑛 ො𝑛 ⋅ Ƹ𝑝 − Ƹ𝑝

1

𝑟3
−
𝑖𝑘

𝑟2

𝑘 = 𝜔/𝑐

• Solve for dipoles: 𝑝𝑖 = 𝛼 𝜔 𝐸 𝑟𝑖 , 𝜔 = 𝐸in 𝑟𝑖 , 𝜔 +

𝑗

𝐺 𝑟𝑖 , 𝑟𝑗 , 𝜔 𝑝𝑗

• Quantum version?



Optical properties of dense atomic gases

• Significant body of work already on dense atomic gases

Theory

Experiment

J. Ruostekoski, S. Yelin, M. Fleischhauer, J.-J. Greffet, A.M. Rey, S.E. 
Skipetrov, T. Wellens, O. Romero-Isart…

A. Browaeys, R. Kaiser, C.S. Adams, J. Ye, J. Beugnon, …

• General agreement that one must go beyond Maxwell-Bloch 
equations

• Including observations of smaller optical response

• But a clear-cut answer is still elusive!

Challenges of coupled dipole approach:

• Number of equations ∝ 𝑁atoms

• Too much information!



Lorentz-Lorenz model

• Atom j sits in a small shell of vacuum, surrounded by a smooth 
index provided by other atoms

Atom 𝑗

2R ≪ 𝜆𝑒𝑔
𝑛 = 1

𝑛

𝐸𝑖𝑛

𝑝𝑗 ≈ 𝛼(𝜔) 𝐸𝑖𝑛 𝑟𝑗 , 𝜔 +
𝑛 𝜔 2 − 1

3
𝐸𝑖𝑛(𝑟𝑗 , 𝜔)

• Lorentz-Lorenz still seems insufficient for near-resonant atoms

𝑛𝐿𝐿 𝜔 = 𝑛𝑀𝐵(𝜔 + Τ𝑁atoms𝜆
3 8𝜋2𝑉)

• Famous approximate model for multiple scattering: Lorentz-
Lorenz

Questions?



Numerical approach

• Conceptual idea:

Plane wave 𝐸𝑜𝑢𝑡 = 𝑡(𝜔)𝐸𝑖𝑛 ∼ 𝑒𝑖 Τ𝜔 𝑐 𝑛𝐿𝐸𝑖𝑛

Infinite slab

• Numerics (disordered system):

Up to Natoms ∼ 3 × 104 atoms 
randomly distributed
Averaging over configurations

• Focused Gaussian input (𝑤0 < 𝑅cyl) to avoid diffraction effects



Numerical approach

• Point-by-point field re-construction:

• Time-consuming, and contains complex “speckle” pattern

⟨𝐆𝐚𝐮𝐬𝐬𝐢𝐚𝐧|

• Project transmitted field back into the Gaussian mode

𝑡 ∼ 1 + 𝑖
𝜆0
2

𝑤0
2 

𝑗

𝐸𝑖𝑛
∗ 𝑟𝑗

𝐸in,max
𝑝𝑗 ∼ 𝑒𝑖𝑘0𝑛𝐿

𝐸 𝑟,𝜔 = 𝐸𝑖𝑛 𝑟, 𝜔 +

𝑗

𝐺 𝑟, 𝑟𝑗 , 𝜔 𝑝𝑗(𝜔)

• Solve coupled dipole equations



Numerical results

Re(n) vs. frequency

Increasing 
density

• Clear deviation from MB equations for Τ𝑁atoms 𝜆3 > 102

ΤΔ Γ0 (Δ = 𝜔𝑖𝑛 −𝜔𝑒𝑔)

MB equations



Scale invariance

Key points:

• Invariant rescaled spectrum 𝑛 Τ𝜔𝜆3 Γ0𝑁atoms at high 

densities

• Maximum index saturates to a “real-life” value of 𝑛 ≈ 1.7!!

• Saturation occurs at densities ∼ 108 times less dilute than a 
solid

Re(n) vs. rescaled 
frequency

ΤΔ𝜆3 Γ0𝑁atoms



A simple theory: two atoms

• Dipoles strongly interact via their near fields

𝐺 𝑟1, 𝑟2 ∼ 1/𝑟3

Γ+ ≈ 2Γ0 Γ− ≈ Γ0 Τ𝑟 𝜆𝑒𝑔
2 Dicke sub/superradiance

Δ𝜔+ ∼ ±Γ0 Τ𝜆𝑒𝑔 𝑟
3
Δ𝜔− ∼ ∓Γ0 Τ𝜆𝑒𝑔 𝑟

3
Strong frequency shift

𝑟 ≪ 𝜆eg

• Symmetric and anti-symmetric normal modes ±
റ𝑝 റ𝑝 റ𝑝 − റ𝑝



A simple theory: two atoms

• Scattering spectrum

∼ 𝜆𝑒𝑔
2

𝜔eg

single atom

𝜎𝑠𝑐(𝜔)−

Γ−

𝜔− = 𝜔eg − Δ𝜔

+

𝜔+ = 𝜔eg + Δ𝜔

Γ+

• Equivalent optical spectrum

𝜔eg, Γ0

𝜔eg, Γ0 𝐺 𝑟1, 𝑟2 ∼ 1/𝑟3 𝜔+

𝐺12 ≈ 0

𝜔−

Two inhomogeneous, non-interacting atoms!

𝑟 ≪ 𝜆eg

𝜔in



Many atoms: renormalization group

• Disordered atomic ensemble:

• Statistically, some pairs are extremely close to each other

• Interact with each other much more strongly (∼ Τ1 𝑟3)
than with all other atoms combined

𝐺(𝑁×𝑁) = 𝐺near−field,pair
(2×2)

+ 𝐺 − 𝐺near−field,pair
(𝑁×𝑁)

• Diagonalize these pairs first, replace with non-interacting 
atoms!

𝜔eg, Γ0

𝜔eg, Γ0

𝜔+

𝐺near−field,12 = 0

𝜔−

“Strong disorder renormalization group (RG)”



Many atoms: renormalization group

• Homogeneous atomic medium is optically equivalent to 
inhomogeneous medium with resonance distribution 𝑃(𝜔)

𝜔eg

𝑃(𝜔) RG

Τ𝜔 Γ0

• Eliminate strong near-field interactions, leaving only far-field 
interactions



Origin of refractive index saturation

• Scale invariance when frequency is rescaled by density, 𝜔 →
Τ𝜔𝜆3 𝑁atoms

• Amount of broadening directly increases with density

• Universal behavior!

• “Fixed point” of RG flow 



Origin of refractive index saturation

• At most ∼ 1 near-resonant atom per cubic wavelength, per 
bandwidth ∼ Γ0, regardless of physical density

𝜔𝑖𝑛

Renormalized ensemble

∼ 𝜆𝑒𝑔

• Full simulations vs. RG:
Coupled dipole

MB, LL

Coupled dipole on 
renormalized system



Why do conventional theories fail?

• Want to ignore granularity → need to make smooth medium
approximation

• Example: Lorentz-Lorenz model

Atom 𝑗

2R ≪ 𝜆𝑒𝑔
𝑛 = 1

𝑛

𝐸𝑖𝑛

𝑝𝑗 ≈ 𝛼(𝜔) 𝐸𝑖𝑛 𝑟𝑗 , 𝜔 +
𝑛 𝜔 2 − 1

3
𝐸𝑖𝑛(𝑟𝑗 , 𝜔)

• Renormalization group: single nearest neighbors matter most, 
due to ∼ Τ1 𝑟3 interaction



A proper smooth medium theory

• Use RG to get rid of strong near-field interactions

• Smooth medium approximation now valid!

• Apply M-B equations to broadened medium 𝑃(𝜔eff):

𝑛MB 𝜔 2 ∼ 1 +න𝑑𝜔eff 𝛼 𝜔 − 𝜔eff 𝑃(𝜔eff)
𝑁atoms

𝑉

max 𝑛 ≈ 1.8



Towards a complete theory of index?

• Combined theory of multiple scattering and quantum 
chemistry?

Τ𝑁atoms𝜆
3 𝑉

m
a

x
 𝑛

textbook

real materials

chemistry

cold atoms
disordered (RG)

• Short- or long-range atomic order?

crystal?



Outlook: other possible implications

• RG as a general tool for multiple scattering in random media?

• Nonlinear and quantum regimes?

• Quantum technologies based on atom-light interfaces

ΤΔ Γ0

• Im(n) also reaches a limiting value

𝐷 ∼ Im 𝑛 𝑘0𝐿 Optical depth

• Bounds on minimum system size and maximum atomic 
density for high-fidelity quantum technologies?

• D sets fundamental error bounds on almost every application 

Error ∼ Τ5.8 𝐷 for a quantum memory PRL 98, 123601 (2007)



Outlook: a quantum theory

• Error bounds for applications are derived from quantum 
Maxwell-Bloch equations

• Do not include interference and multiple scattering!

𝑔

𝑒
Γ0

Γ0

Γ0Γ0

Inconsistency

• Energy conservation → emission process must be correlated



Outlook: a quantum theory

• Famous historical example:

Dicke superradiance

Exactly solvable by collective spins

መ𝑆 =
𝑗
𝜎𝑔𝑒
𝑗 ??? No symmetries

• One possible approach:

Classical Quantum

Dipoles 𝑝𝑗Degrees of freedom: “Spins” 𝑔𝑗 , |𝑒𝑗〉

Total field: 𝐸 𝑟 = 𝐸𝑖𝑛 𝑟 +

𝑗

𝐺 𝑟, 𝑟𝑗 𝑝𝑗 𝐸(𝑟) = 𝐸in(𝑟) +

𝑗

𝐺 𝑟, 𝑟𝑗 ො𝜎𝑔𝑒
𝑗

Dynamics: 𝑝𝑖 = 𝐸in 𝑟𝑖 +

𝑗

𝐺 𝑟𝑖 , 𝑟𝑗 𝑝𝑗 𝐻 = −
𝑖,𝑗
𝐺 𝑟𝑖 , 𝑟𝑗 𝜎𝑒𝑔

𝑖 𝜎𝑔𝑒
𝑗



Outlook: a quantum theory

• Can we use interference as a resource in applications?

• Optical depth: branching ratio of information

𝑵𝒂𝚪𝟏𝐃

Single collective excitation 𝜓 ∼ σ𝑗 𝑒
𝑖𝑘⋅𝑟𝑗|𝑒𝑗⟩

Γ0

Γ0Γ0

𝐷 ∼
𝑁𝑎Γ1D

Γ0

A.A. Svidzinsky et al, PRA 
81, 053821 (2010)

• Exploiting interference:

Branching ratio ∼
𝑁Γ1D

Γ′ 𝑁
≫ 𝐷

• Quantum memory: Error ∼ 𝑒−𝐷

A. Asenjo Garcia et al, PRX 7, 031024 (2017)



Summary

• Topic of light-matter interactions including multiple scattering 
is a rich and exciting frontier!


