Quantum fluids of light in semiconductor lattices

Jacqueline Bloch

Center for Nanoscience and Nanotechnology C2N, CNRS - Université Paris Saclay Palaiseau, France

> Jacqueline.bloch@c2n.upsaclay.fr http://www.polaritonquantumfluid.fr

Centre de Nanosciences et de Nanotechnologies

Inspiration: Emerging physics in the solid state

Superfluidity

Fractional Quantum Hall effect

Graphene

Topological insulators

Emulation with light

A. Crespi, Nature Photonics 7, 322 (2013)

Topological edge states Si

M. Hafezi, Nat. Phot. **7** 1001 (2013)

Synthetic Landau levels

2 photon Laughling state Arxiv 1907.05872

Non reciprocal lasing

B.Bahari et al., Science 10.1126/science.aao4551(2017)
M. A. Bandres et al. Science 10.1126/science.aar4005 (2018)
S. Klembt et al., Nature 562, 552 (2018)

Driven-dissipative photonic Bose-Hubbard model

Out of equilibrium quantum physics

Ciuti & Carusotto, Rev. Mod. Phys. **85**, 299 (2013) M.J. Hartman, Journal of Optics (2016) C.Noh and DG Angelakis, Report on progress in Physics (2016) A. Biella et al., Phys. Rev. A 96, 023839 (2017) F. Vincentini et al., Phys. Rev. A 97, 013853 (2018)

Use nanotechnology to engineer photonic lattices

10.0um

Image from Würzburg

Outline

Emergence of criticality in quasi-crystals

Discrete gap solitons in a flat band

Microcavity polaritons

Probing polariton states

 $k_{\prime\prime} = \omega/c \sin(\theta)$

0

Imaging of real space

Imaging of k-space

Bose-Einstein condensation of exciton polaritons

J. Kasprzak¹, M. Richard², S. Kundermann², A. Baas², P. Jeambrun², J. M. J. Keeling³, F. M. Marchetti⁴, M. H. Szymańska⁵, R. André¹, J. L. Staehli², V. Savona², P. B. Littlewood⁴, B. Deveaud² & Le Si Dang¹

Benoid Deveaud

Le Si Dang

Kasprzak et al. Nature, 443, 409 (2006)

See also H. Deng et al. Science (2002), R. Balili et al., Science (2007)

Polariton superfluidity

lacopo Carusotto

Cristiano Ciuti

Alberto Amo

Alberto Bramati

Elisabeth Giacobino

C. Ciuti and I. Carusotto PRL 242, 2224 (2005)

A. Amo et al. Nature Physics 5, 805 (2009)

C. Ciuti & I. Carusotto, Rev. Mod. Phys. 85, 299 (2013)

Emulation of many body systems with lattices of polaritons

Phase locking of polariton condensates

Realizing the classical XY Hamiltonian in polariton simulators, Natalia G. Berloff et al., Nature Materials 16, 1120 (2017)

Natalia Berloff Cambridge

Polarization instability in coupled polariton condensates

Spin order and phase transitions in chains of polariton condensates,H. Ohadi, et al., Phys. Rev. Lett. 119, 067401 (2017)

Jeremy Baumberg Cambridge

Polariton lattices: Tight binding approach

Engineering of a 1D flatband : "comb" lattice

Pillar diameter = 3 μm Interpillar distance= 2,4 μm

Far field emission

Emission of flat band in real space

Polariton honeycomb lattice

Polaritonics at C2N

Spin orbit coupling

Sala et al., Phys. Rev. X 5, 011034 (2015)

N Carlon Zambon et al., Nature Photonics 13, 283 (2019)

> N. Carlon Zambon et al., Opt. Lett. 44, 4531 (2019)

Quasi-periodic 1D lattice

D. Tanese et al., PRL 112, 146404 (2014)

F. Baboux et al., PRB 95, 161114(R) (2017)

V. Goblot et al., Arxiv1911.07809

Flat band physics

F. Baboux et al. PRL116, 066402 (2016)

V. Goblot et al. Phys. Rev. Lett. 123, 113901 (2019)

Dirac physics

T. Jacqmin et al., PRL 112, 116402 (2014)
M. Milicevic et al, 2D Mater. 2, 034012 (2016)
M. Milicevic et al. PRL. 118, 107403 (2017)
M. Milicevic et al., Phys. Rev. X 9, 31010 (2019)

O. Jamadi et al., arXiv:2001.10395 P. St-Jean et al., arXiv:2002.09528

SSH chain and topological lasing

P. Saint Jean et al., Nature Photonics 11, 651 (2017)

Outline

Emergence of criticality in quasi-crystals

Discrete gap solitons in a flat band

Quasicrystals

- Quasicrystal: aperiodic system with long-range order
 - Penrose tilings

• Diffraction peaks of AIMn alloys:

Shechtman *et al.*, PRL, 1984 Levine, Steinhardt, PRL, 1984

Synthetic Quasicrystals

Multilayer structures

Gellermann *et al.,* PRL **72**, 633 (1994) Hattori *et al.,* PRB **50**, 4220 (1994)

Coupled waveguides

Kraus et al., PRL 109, 106402 (2012)

Vignolo et al., PRB 93, 075141 (2016)

Microwave resonators

Cold atoms Roati *et al.*, Nature **453**, 895 (2008) *Henrik P. Lüschen et al.*, *Phys. Rev. Lett. 119*, *260401* (2017)

Phonons Steurer & Sutter-Widmer, J. of Phys. D: Applied Physics **40**, R229 (2007)

Aubry-André-Harper quasicrystal

• Crystal perturbed by incommensurate on-site potential: $V_n = \lambda cos(2\pi bn)$

• Crystal perturbed by incommensurate on-site potentia $V_n = \lambda cos(2\pi bn)$

Lahini et al., Phys. Rev. Lett. 103, 013901 (2009)

- Cold atoms in optical lattices: Roati *et al.*, Nature **453**, 895 (2008)
- Also in coupled waveguides arrays: Lahini et al., Phys. Rev. Lett. 103, 013901 2009)

Fibonacci quasicrystal

For each site $V_n = \pm \lambda$, according to: $V_n = \lambda \times sgn[cos(2\pi nb + \phi) - cos(\pi b)]$ Y. E. Kraus et al., PRL 109, 106402 (2012) **2/(1+√5)** site phason Fibonacci quasicrystal: • ABAABABAABAABAABAABAABAABAABAABAA Λ > 0 -/ 5 10 15 20 25 30 0 n 0.03 $|\psi_n|^2$ Localization properties: 0.00 critical eigenstates 5000 no 0.03 $|\psi_n|^2$ 0.00 |-- -987 987 site

Continuous deformation: IAAF model

• Interpolating Aubry-André-Fibonacci model:

$$V_n(\lambda,\beta) = -\lambda \frac{\tanh\beta[\cos\left(2\pi nb + \phi\right) - \cos\left(\pi b\right)]}{\tanh\beta}$$

Modulation frequency: $b = 2/(1+\sqrt{5})$

Kraus, Zilberberg, PRL 109, 116404 (2012)

O. Zilberberg

Continuous deformation: IAAF model

Localization phase diagram: theory

• Tight-binding approach: $\mathcal{H}\psi_n = t(\psi_{n+1} + \psi_{n-1}) + V_n(\lambda,\beta)\psi_n$

A. Štrkalj O. Zilberberg

 Inverse participation ratio for a state:

IPR =
$$\frac{\sum_{n=1}^{L} |\psi_n|^4}{\sum_{n=1}^{L} |\psi_n|^2}$$

• Extended state:

 $IPR = 1/L \rightarrow 0$

• State localized on Nstates: IPR = 1/N

Localization phase diagram: theory

• Tight-binding approach: $\mathcal{H}\psi_n = t(\psi_{n+1} + \psi_{n=1}) + V_n(\lambda,\beta)\psi_n$

A. Štrkalj O. Zilberberg

Polaritons in a 1D periodic potential

$$E\psi(x) = -\frac{\hbar^2}{2m}\frac{\partial\psi(x)}{\partial x} + V(x)\psi(x) \qquad \qquad V(x) = \frac{\hbar^2}{2m}\frac{n^2\pi^2}{w(x)^2}$$

Polaritons Interpolating AA-Fibo structures

Aubry André (Harper) quasi-periodic potential

On-site potential incommensurate with the lattice period

Localization in interpolating AAFibo structures

Localization in interpolating AAFibo structures

Experimental localization phase diagram

Experimental localization phase diagram

Outline

Emergence of criticality in quasi-crystals

Discrete gap solitons in a flat band

What about interactions? Non-linear physics?

Mean field approximation :

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(x) + U|\psi|^2 - i\frac{\gamma}{2}\right]\psi + iF(x)e^{-i(\omega t - k_p x)}$$

C. Ciuti & I. Carusotto, Rev. Mod. Phys. 85, 299 (2013)

Nonlinear micropillar

Baas et al., PRA 69, 023809 (2004)

Nonlinear dimer

Transmission of the dimer

Phase diagram at strong driving

Very Strong driving: $UN_T \gg \gamma_T$, J

Observation of tristability

S. Rodriguez et al., Nature Commun. 7, 11887 (2016).

Non-linearity in a flat band

Polaritons

Naoyuki Masumoto et al., NJP 14 065002 (2012) S. Klembt et al., Appl. Phys. Lett. 111, 231102 (2017) C. E. Whittaker et al., Phys. Rev. Lett. 120, 97401 (2018)

Coupled lasers:

M. Nixon et al., Phys. Rev. Lett. 110, 184102 (2013).

Coupled waveguides

D. Guzman-Silva et al., New. J. Phys. 16, 063061 (2014) Rodrigo A. Vicencioet al., PRL 114, 245503 (2015) S. Mukherjee et al., PRL 114, 245504 (2015)

Cold atoms

Shintaro Taie et al., Sci. Adv. 1, e1500854 (2015)

 $i\hbar \frac{\partial \Psi}{\partial t} = \lambda$ $\frac{\hbar^2}{2m}\nabla^2 + V(x) + U|\psi|^2 - i\frac{\gamma}{2}\psi + iF(x)e^{-i(\omega t - k_p x)}$

No kinetic energy => strong effect of disorder, of interactions

Non-linearity in a flat band

Excitation in the gap: laser detuning = interaction energy

Non-linearity in a flat band

• Formation of nonlinear domains:

• Total intensity in the chain:

• Domain size:

Excitation of gap solitons

• Truncated Bloch Waves in conservative systems:

C. Bersch *et al.*, Phys. Rev. Lett. 109, 093903 (2012)
Th. Anker *et al.*, Phys. Rev. Lett. 94, 020403 (2005)
F. Bennet *et al.*, Phys. Rev. Lett. 106, 093901 (2011)

Here driven dissipative context

Multistability of the domains

High degeneracy (no kinetic energy) => Complex multistability

Dynamical hysteresis? Chaotic instability?

V. Goblot et al, Phys. Rev. Lett. 123, 113901 (2019)

> Emulation of Hamiltonians with lattices of coupled cavities

Potential for Applications

Important developments for room temperature operation of polariton devices ZnO, 2D materials, Perovskite.....

- What about going beyond mean field? Blockade regime

How far from quantum regime ? Quantum correlations?

How to increase interactions? Couple to different excitations

> Dipolar polaritons:

P. Cristofolini et al., Science 336, 704 (2012) E. Togan et al., Physical Review Letters 121, 227402 (2018) see also : I. Rosenberg et al., Sci. Adv. 4, eaat8880 (2018)

- > Polaron polaritons: S. Ravets et al., Phys. Rev. Lett. 120, 057401 (2018)
- > Trion in 2D materials : R. P. A. Emmanuele et al., arXiv:1910.14636
- Photons coupled to fractional quantum Hall states,
 D Kainanal et al. Nature 570

Generation of multi-photon correlated states

I. Carusotto et al., Phys. Rev. Lett. 103, 033601 (2009)

Acknowledgment to our theoretician collaborators

Cristiano Ciuti

Acknowledgements to experimentalists

