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QSS08 - Thierry Giamarchi - Questions & 
Answers 

 
Thierry Giamarchi 

 
THIERRY: First, many thanks to all for these very nice (and challenging !) questions both during 
the talk and below. Hope that the few lines below answer your questions. In case this is not the case 
don't hesitate to send me an email. 
William Phillips: There are various senses in which systems can be 1-D or point contacts. Could 
you say a bit about this for atoms and for CM? 
THIERRY: The first condition is of course that the quantization due to the confinement in the 
directions transverse to the "tube" leads to energy gaps that are much higher than the temperature 
and/or interactions. In that case one can safely ignore the transverse directions and focus on the 
longitudinal degrees of freedom. Then the condition to decide between 1D and 0D (QPC) is 
essentially similar depending on the length of the system. There is a characteristic length on which 
the properties of the system can vary. For a superconductor for example this is the coherence length 
(would be the healing length for bosons). Then if the system is long compared to this coherence 
length the variation of the properties along the tube must be considered and the system is a 1D 
system. On the contrary if the length is short, then one can consider that the system is zero 
dimensional. For condensed matter the coherence length is usually quite long since Tc is much 
smaller than EF, the Fermi energy – typically 10 K versus 10 000K, thus ξ0 the coherence length 
can be large (e.g. 10000 Å) . This allows to get QPC in break junctions such as the ones shown on 
slide 7. Conversely realizing good long 1D superconducting wires is not so easy for the same 
reason, since one need to realize a "long" wire on which the transverse confinement is regular. As a 
result many superconducting "wires" have turned out to be in the end in the regime of temperature 
at which they were considered more describable in terms of 0D structures. Doing good 1D 
superconducting wires is thus a very challenging and interesting question. For cold atoms, the 
attraction can be made very strong, which means that one can have relatively small cooper pairs if 
one wants to. Of course the possibility to have a good point like attraction is unique. The transverse 
confinement can be realized in an efficient and controlled way. So doing either a QPC or a 1D 
structure is in principle possible. The price is, like with most fermion experiments, the fact that the 
temperature itself is still quite high (still of the order of TF/10). The cold atomic system have thus 
provided very nice and complementary systems to the CM ones and allowed to probe both the QPC 
and 1D regimes, but with the obligation for the theory to be serious about the temperature effects. 
Karen Hallberg: Hi Thierry, thanx for your interesting talk! What about charge transport with 
repulsive interactions? 
THIERRY: The same (theoretical) technology can be used for computing transport with repulsive 
interactions. In that case for the charge transport properties are of course quite sensitive to the 
filling of the band, leading to a Mott insulator at half filling. The interesting aspect is that one can 
use the duality existing with contact interactions (exact for the Hubbard model, and approximately 
exact for a Tomonaga-Luttinger liquid) allowing to map the repulsive interactions to attractive ones. 
This is obtained by doing a particle-hole transformation on one spin species only. In that case the 
charge sector becomes the spin sector. The spin transport with attraction is thus directly related to 
the charge transport with repulsion. The backscattering term with exists for the spin transport for the 
unpolarized system is like the Umklapp term that exists in the charge transport for 1/2 filling and 
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that is responsible for the Mott insulating phase. 
Ekaterina Plotnikova: I wonder what would happen if the weak periodic potential is tilted? 
William Phillips: Following up on the question of Ekaterina Plotnikova about a tilted potential—
when would you get Bloch oscillations instead of conduction? 
THIERRY: Things will depend on what is inside the system (e.g. clean or disordered etc.). For a 
clean, non-interacting system the tilt of the potential will lead ultimately to Bloch oscillations, since 
the particles will "accelerate". Note that if the system is attached to reservoirs then the potential 
along the system itself remains zero since the system is a perfect conductor (R=0 thus V= R I means 
zero potential even with a finite current). All the potential drop takes place at the contact between 
the reservoirs and the system. Thus applying the Laudauer-Buttiker formula leads to a perfect 
conductance and a finite current. This is different from the situation with the Bloch oscillations. If 
the system contains processes that lead to scattering, either due to interactions or e.g. to disorder, 
then one would expect that system to have a finite resistivity and thus to have a uniform potential 
drop inside from +V/2 to -V/2. In that case the tilting of the potential and the reservoirs should be 
more closely related, but of course because there are scattering the Bloch oscillations are also 
destroyed. There can also be, depending on how the system can locally equilibrate inside the wire, 
non equilibrium distributions (e.g. a double Fermi step) if inelastic scattering do not exist. These out 
of equilibrium distributions have been measured in condensed matter wires. Globally how perfect 
systems (e.g. interacting but otherwise clean and invariant by translation – integrable or not) would 
react to a tilt and/or reservoirs is a non trivial and interesting question indeed ! 
W. Vincent Liu: Many-body insulator pinned by LE liquid is interesting. Can this be thought as due 
to the size of Cooper pair in ID (uncondensed!) being shorter than that of weak BCS superconductor 
in 3D? I would like to ask your expert opinion on what might be a good scale to think of the size of 
the 1D Cooper pair. Seems very different than 3D weak BCS case (with coherence length scale). 
THIERRY: No the pinning of the LE liquid is not directly connected to the issue of the size of the 
cooper pair. It comes from the fact that in 1D because susceptibilities are in general divergent even 
a very small perturbation can lead to an ordering. For example for bosons if one puts a very small 
periodic potential with 1 boson per period one can get a Mott insulator of bosons, provided the 
repulsion between the particles is large enough. This would be impossible in 2D/3D and even if you 
have hard core bosons you would need a deep enough lattice to be able to go from the superfluid to 
the Mott insulator. The pinning of the LE rests on a similar property. Because there is spin charge 
decoupling in 1D you can think of the cooper pair (regardless of its size) as a kind of effective hard 
core boson (made of two original fermions). These bosons are "hard core" and have in addition a 
longer range repulsion (one pair near another pair would block virtual breaking and recombination 
of the pair – hence a loss of energy of the order of t2/|U|). Thus the filling of two fermions per 
period of the potential correspond to 1 "boson" / period and will lead to a 1D Mott insulator of 
bosons. 
For the size of the cooper pair itself, one can have a priori any size depending on the interaction U. 
Comparing between 1D and 3D would depend on the precise density of states considered but 
actually since in 1D the susceptibilities are logarithmically divergent, the equation for the gap in 
spin sector is quite similar to the mean field BCS equation in 3D (with the different density of 
states). 
François Damanet: Regarding the spin transport work: in order to reach the interesting regime 
experimentally, would it not be easier to reduce the size of the channel instead of reducing the 
temperature? 
THIERRY: Indeed, the difficulty is to find the sweet spot in which you make the channel long 
enough that you have more than a couple of particles in it but short enough that the thermal length 
allows to scan the different regimes. One can also play with the cooper pair size. 
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Ramesh Thamankar: from the point of view of experiment, the channel considered is very long. 
would you not get any defect in this channel ? 
THIERRY: The correct answer should come directly from the experimentalists on that point :-) but 
I would say that the control on the cold atom system is good enough that there are no defects in the 
sense of a strong bump of the potential etc. This problem is conversely absolutely crucial for the 
condensed matter realizations for which if you want a good 1D wire you must have a quite tight 
transverse confinement but at the same time ensuring that you are not pinching the wire at a point. 
This has happened many times in the past and is one of the obstacles in realizing good 1D 
superconducting wires. This is even worse if you don't want the wire to be superconducting since in 
that case you must compare the transverse dimensions to kF-1 and not to the coherence length which 
puts much more severe constraints .This could however be done in semiconducting systems which 
offer a good enough control on the structures. 
Jinlong Yu: Thanks Thierry. I wonder if the 1D contact is topological itself (e.g., forming an SPT 
such as an SSH lattice), does the transport change a lot? 
THIERRY: That is a very good question and I don't know the answer but would be very tempted to 
answer yes. Indeed we know that if we get Andreev bound states there are consequences. Certainly 
something to explore. 
Gal Ness: Thanks for an inspiring talk! Can you remark about the case where one periodically flips 
the direction of the driving mu difference, studying the ”AC” voltage characteristics? 
THIERRY: A priori the answer is yes, and this would be a measure of the a.c. conductivity. In the 
experimental system I was presenting in the talk, this would be difficult to do in practice, since the 
system is originally prepared with an imbalance of population and then simply released to the 
channel. For the a.c. conductivity however there are other ways to realize such measurements. One 
simple way (see e.g. A. Tokuno + TG PRL 106, 205301 (2011)) is to put the system in an optical 
lattice and then modulate the phase of the optical lattice (or conversely shift periodically the center 
of the trap – which corresponds to a change of referential see Z. Wu, E. Taylor, and E. Zaremba, 
EPL 110, 26002 (2015)). This produces the equivalent of a periodic force on the system and gives 
access (in principle :-) ) to the a.c. conductivity. In practice this has been used in cold atoms (see 
e.g.g R. Anderson, F. Wang, P. Xu, Vi. Venu, S. Trotzky, F. Chevy, and J.H. Thywissen PRL 122, 
153602 (2019)). 
On the theory side computing the a.c. conductivity is of course an interesting question. Quite 
paradoxically this is in fact less difficult that computing transport at ω=0 since the frequency 
provides a good cutoff on the time dependence. In an interacting 1D system on typically gets (this 
depend of course on the system) powerlaws of the frequency with exponents that depend on the 
interactions inside the system (the so called Luttinger liquid exponents). For more details on that 
point I can refer you to the transport chapter in my book on 1D systems. 
Jeremy Levy: Hi Thierry, thank you for the talk! I was wondering if it makes sense (is possible) to 
think of spin drag in 1D as a type of Hall effect, using the trick of synthetic dimensions that you 
discussed. 
THIERRY: Yes one can indeed create Hall effect measurements by measuring the spin transport. 
The spin up and down would be the upper and lower leg of a two leg ladder and measuring the 
charge/spin transport gives access to the current on each "leg" separately. In order to make it a 
ladder and to have a Hall effect one need to make transitions that flips the spin with a phase (as e.g. 
in Fallani's experiment on slide 28). Then the spin-drag is indeed practically the Hall resistance (if 
one normalized by the charge and spin conductance). The only catch is that there are "non-local" 
(i.e. coupling the two "legs" of the ladder) interactions that come from the fact that in the true 
system spin up and down share the same physical space, but this is not necessarily a problem (more 
a feature than a bug :-) ) 
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William Phillips: This talk has been about fermions. What about bosons? We don’t have a fermi 
energy or pairing, but we do have superfluidity and features like transverse excitation quantization 
in a channel, so what kinds of things are the same and what are different? 
THIERRY: Actually in 1D fermions and bosons are not that different :-) There is a the equivalent 
of a "Fermi wavector" with the identification of 2 kF = 2 π ρ0 (ρ0 being the average boson density). 
This is apparent when one uses the bosonisation technique to describe such systems and also of 
course via Jordan-Wigner transformations (the Tonks limit is one of the examples of this 
connection). Loosely speaking fermions with attraction are very close to bosons with repulsion in 
1D. One has thus very related phenomena for transport in interacting bosonic systems and several 
aspects of the transport are indeed very similar (e.g. anomalous powerlaws, pinning on weak lattices 
etc). For bosons for example a good geometric to tackle such issues could be ring geometries. The 
differences between fermions and bosons will become much stronger when one has to deal with 
coupled 1D systems, because in that case the mapping does not hold and coupled 1D chains of 
fermions are a priori quite different (in particular with repulsive interactions) than coupled chains of 
bosons. This means that transport through ladders, quasi-1D systems and Hall are of course 
interesting to understand and will a priori depend much more on the statistics of the particles. 
William Phillips: You use the terms superconductor and perfect conductor, and these are different. 
Are they also different in cold atoms as opposed to condensed matter fermion systems? 
THIERRY: Yes they are. Free fermions are a perfect conductor, but the system would not have any 
phase rigidity contrarily to a superconductor. So although both would have at T=0 formally an 
infinite conductivity several other properties would be markedly different such as e.g. the response 
to a twist in boundary condition or equivalently the current induced by a flux in a ring geometry. 
The periodicity with flux would be different for the two systems. They are also different in their 
finite temperature behaviors and also if one puts a small amount of scattering in the system. The 
superconductor is of course usually (1D is a more complicated case here) more robust than a perfect 
conductor. For the last part of the question: I don't think there would be any difference of principle 
between cold atoms and condensed matter, with perhaps the two following "limitation" that in 
condensed matter it is practically impossible to realize a perfect conductor, since there is always in 
practice something to scatter the carriers. The best that has been achieved in that respect is 
semiconducting structures that are clean enough that the mean-free path is larger than the size of the 
system but this is more the exception than the rule. Cold atoms provide much more easy paths to 
realize "perfect conductors". 
Yaakov Yudkin: This setup looks like a macroscopic double-well potential. Are the 
phenomenology and theory similar? And could you e.g. see Rabi flopping in Esslinger's 
experiment? 
THIERRY: It is a double well potential only if you consider that only the global phase of the 
reservoirs matters. In that case you would get indeed Josephson oscillations due to the potential 
difference between the two wells. These oscillations have been seen in a slightly different setup 
where the junction between the reservoirs is long and the tunneling quite weak so that mostly the 
Josephson coupling between the reservoirs is present and the single particle tunneling is largely 
suppressed [see G. Valtolina, A. Burchianti, A. Amico, E. Neri, K. Xhani, J. A. Seman, A. 
Trombettoni, A. Smerzi, M. Zaccanti, M. Inguscio, G. Roati Science 350 1505 (2015)]. In the case 
of the experiment that I was mentioning by the Brantut/Esslinger group the tunneling is quite good 
and thus the single particle excitations should be taken into account. One should thus also consider 
these excitations in the reservoirs. This leads to a very interesting mechanism in which the transfer 
of a pair from one reservoir to the other can instead of leading to oscillations, give its energy to a 
single particle excitation (and this repeated for many pairs) to overcome the existence of the single-
particle gap. This mechanism (multiple Andreev reflections) thus allows to have a d.c. current at 
finite voltage (even if this voltage is below the gap). 
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Emily: (1) can you speak about difference of various results if interactions are long-ranged? (2) if I 
want to play around with DMRG, is there a publicly available code you recommend? 
THIERRY: The long range effects is of course an interesting question whose answer would need 
much more than those few lines. In short modifications with depend on how "long-range" is the 
long-range interaction. Typically the long range interaction (and I assume here that you mean long 
range repulsive) would lead similar effects that more "repulsive" contact interactions provided the 
interaction is integrable, namely that ∫ dr V(r) is finite. This would be the case for example for a 
dipolar interaction (which decreases as 1/r3) in 1D. These effects that be incorporated in a 
modification of the Luttinger liquid parameters. Of course depending on how strong is this 
modification other phases (that would be inaccessible with just a contact interaction) can be 
explored and thus the transport is modified accordingly. The situation becomes more extreme when 
the interaction is not integrable (which is the case of the Coulomb 1/r interaction). In that case one 
has a modified phase (which was called a Wigner crystal), which has different properties than most 
of what I discussed in the talk, with a much more ordered charge structure (this more easily pinned 
on potentials either periodic or disordred). I refer you to a chapter ("Refinements") in my book on 
1D systems if you want to know more on this particular case. 
For the DMRG I guess that there are several possibilities. One quite complete numerical library is 
the ALPS library http://alps.comp-phys.org/mediawiki/index.php/PapersTalks which has several 
codes for numerically solving models (exact diagonalization, monte-carlo, and of course a DMRG 
code). Another extremely useful library is the Itensor library which contains both the tools and 
tutorials on DMRG http://itensor.org/ 
Callum Duncan: Thinking along the lines of the scanning tunnelling microscope, could you use 
this kind of set up as a probe of some properties of what is at the moment one of the reservoirs? Or 
is this not a useful line of thought in a cold atom set up? I would perhaps assume the latter. 
THIERRY: At the moment the present setup is more used to probe the physics of the system 
between the two reservoirs. But you are perfectly correct that this is also a setup in which one does 
probe the physics of the reservoirs (for example the observation of the multiple Andreev reflections 
with the QPC is clearly more linked to the properties of the reservoirs than the "system" since the 
system is just vacuum :-) in that QPC case. One can thus in principle imagine using such systems in 
the same spirit than an STM. This could complement other techniques that have been used (such as 
e.g. the so called quantum microscopes, in which one has access to the density at each point of the 
system) to probe the bulk exotic systems. 


