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Current projects

* | arge-scale cluster-state entanglement
e Quantum state engineering and characterization (quantum error correction encodings)
e Quantum photonics on chip. Collab. w/ UVA ECE: Campbell, Beling, Yi

e Quantum simulation of nuclear physics

e Quantum simulation of condensed matter physics

Today | will address the first two topics.
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Building a continuous-variable quantum computer with light

Gaussian quantum optics (fields)
* | arge-scale entanglement (squeezing)
* No postselection

Non-Gaussian quantum optics (photons)
e Exponential speedup
e Quantum error correction
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Two main flavors of universal quantum computing

1. Circuit-based

2. Measurement-based
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Teleportation as a qubit gate primitive
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Discrete vs. continuous variables,
qubits vs. gumodes

Because CV SCALE

O. Pfister, Continuous-variable quantum computing in the quantum optical frequency comb, J Phys B53, 012007 (2020).



Gaussian quantum optics (EM fields)
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A good starting point: the quantum optical frequency comb

The eigenmodes of a cavity form a large ensemble of classically coherent modes

linear gain

i

Laser

Carrier-envelope-phase locked mode-locked laser = optical frequency comb (OFC)
(106 modes oscillating in phase)

John L. Hall Theodor W. Hansch

Why not turn the QOFC into a quantum computer?

| | quantum OFC
nonlinear gain

()
N/

Optical Parametric Oscillator
(OPO)
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A good starting point: the quantum optical frequency comb

The eigenmodes of a cavity form a large ensemble of classically coherent modes

e ™~ linear gain
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Carrier-envelope-phase locked mode-locked laser = optical frequency comb (OFC)

(106 modes oscillating in phase)

Why not turn the QOFC into a quantum computer?

quantum OFC
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Large
Single-OPO scalab

15 pump modes into YZY, ZZZ, ZYY

?e square grid cluster
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Interfering quantum combs

Interference between identical frequencies of different combs

~104 modes long

Chen, Menicucci, and Pfister, Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb, PRL 112, 120505 (2014)
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Time-domain proposal

“Dual-rail quantum wire”

Akira Furusawa’s group: sequential entanglement of 104 qumodes (2 at a time)

e D—
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2D cluster states have arrived
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3D states (and beyond) just around the corner are
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Take-home message

The generation of sophisticated, QC-universal cluster states on a very large
scale (thousands of gumodes) is

EASY

over continuous variables and is also

highly compatible with an integrated optics approach. (Stay tuned.)

0. Pfister, Continuous-variable quantum computing in the quantum optical frequency comb, Journal of Physics B: Atomic, Molecular, and Optical Physics 53, 012001 (2020); invited topical review.
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Non-Gaussian quantum optics (photons)
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Sae Woo Nam
(NIST)

An experimentally accessible non-Gaussian
operation: photon-number detection
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Superconducting transition-edge sensor

Physics Today 71, 8, 28 (2018)
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An experimentally accessible non-Gaussian
operation: photon-number detection

POVM set={|n) (n|}n=o0...

Sae Woo Nam
(NIST)

Superconducting transition-edge sensor

. 7nmax

Physics Today 71, 8, 28 (2018)
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TES Signal (a.u.)

Processing TES signal: PNR detection

Time (a.u.)
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Processing TES signal: PNR detection
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Processing TES signal: PNR detection

TES Signal (a.u.)
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P(n)
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TES @ PfisterLabs
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Quantum tomography with photon counting

S. Wallentowitz & W. Vogel, PRA (1996)
K. Banaszek & W. Wodkiewicz, PRL (1996)

L[ J J
WIGNERFUNCTION — W (g, p) = — Zyp< | >d
(4:p) = o /_ elamgfejatg )b

- Only function whose marginals yield the quantum probability distributions
- Can be NONPOSITIVE (i.e., nonGaussian for a pure state)
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Quantum tomography with photon counting

S. Wallentowitz & W. Vogel, PRA (1996)
K. Banaszek & W. Wodkiewicz, PRL (1996)

L[ J J
WIGNERFUNCTION — W (g, p) = — Zyp< | >d
(4:p) = o /_ elamgfejatg )b

- Only function whose marginals yield the quantum probability distributions
- Can be NONPOSITIVE (i.e., nonGaussian for a pure state)

Wy(a) = TrlpD(a)(~1)"Di(a)]  ai=q+ip
Wy(a) = —Tr(D(a)pD(a) (~1)"

- Expectation value of the photon-number parity
- Easily measured directly with photon-number-resolving detection

- Raster scan of phase space by amplitude/phase shifts gives whole W(q,p)
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Displacement Setup



Nd: YAG
532 nm,
FWHM = 1kHz

wvim —

— PPKTP(YZY)
— Doubly resonance

— Well below

IF : Interference Filter.

FC : Filter cavity
TES : Transition Edge Sensor

Heralded(Signal)
Channel

Heralding(idler) T)p, = j]\\[f = (0.58(2)

Channel

Overall efficiency
of the signal path.



Experimental results

Negativity was observed in the raw data without any
inference or correcting for losses.
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An even better way to do it

- Efficient reconstruction using semidefinite programming

QSS#13 0/7/16/2020 37
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Non-Gaussian resources => quantum error correction
Gottesman-Kitaev-Preskill (GKP) States

Simultaneous eigenstates of
X=ePe 7Z=¢a0

Gottesman et al. Phys. Rev. A (2001)
Feed-forward

displacement to
correct error

/

Ancilla GKP——
states —

Tzitrin et al. arXiv preprint arXiv:1910.03673 (2019).
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Non-Gaussian resources => quantum error correction
Gottesman-Kitaev-Preskill (GKP) States

Simultaneous eigenstates of O Cluster state
A ix D (O nodes
X — e—lPa, 7 —ea

() GKP states

() Error corrected

Walshe, et al. Physical Review A (2019).

Realistic implementation: Delta spikes = peak width A

| A=03
Gottesman et al. Phys. Rev. A (2001)
Feed-forward 04- n ﬁ
displacement to —~
correct error 5
y Q0.2

Ancilla GKP——
states —

Tzitrin et al. arXiv preprint arXiv:1910.03673 (2019).
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Quantum engineering of GKP states
for CV quantum error correction

|$) =~ |GKP)
H. M. Vasconcelos, L. Sanz, and S. Glancy, “All-optical generation of states for ‘Encoding

a qubit in an oscillator,” Opt. Lett., OL, vol. 35, no. 19, pp. 3261-3263, Oct. 2010.

M. Eaton, R. Nehra, and O. Pfister, Non-Gaussian and Gottesman-Kitaev-Preskill state preparation by photon catalysis, New Journal of Physics 21, 113034 (2019).
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BIG PICTURE: beating lattice-gauge QCD calculations
on classical supercomputers

<’/o+n{—& o) LU"”‘*SF("#QU
[ by %)
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Conclusion
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Conclusion

The quantum optical frequency comb is a viable platform for universal quantum computing

e LARGE-SCALE Gaussian entanglement

e No postselection

e Universal measurement-based QC, strictly equivalent to qubit model

e FAULT TOLERANT non-Gaussian technology for universal QC

e INTEGRABLE in photonic circuits

e TRANSLATABLE to any bosonic mode:
® microwave cavity photons
e phonons
 transverse spatial modes (Hermite- or Laguerre-Gauss)

e temporal modes
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A lesson in research from Ted Hansch...
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