QUANTUM SIMULATION OF LATTICE GAUGE THEORIES WITH RYDBERG ATOMS

Federica Surace

Quantum Science Seminar - Young Researcher Session - November 5th, 2020
WHY GAUGE THEORIES AND QUANTUM SIMULATIONS?

High degree of control and tunability of quantum systems

WHY GAUGE THEORIES AND QUANTUM SIMULATIONS?

High degree of control and tunability of quantum systems

- Use of quantum simulators for strongly correlated matter
WHY GAUGE THEORIES AND QUANTUM SIMULATIONS?

- Use of **quantum simulators** for **strongly correlated** matter
- **Time evolution** of many-particle quantum systems

High degree of **control** and **tunability** of quantum systems
WHY GAUGE THEORIES AND QUANTUM SIMULATIONS?

- Access to real-time dynamics: perspectives for high energy physics
WHY GAUGE THEORIES AND QUANTUM SIMULATIONS?

- Access to **real-time** dynamics: perspectives for **high energy** physics
- Hope (long-term): overcome limitations of **experiments**, **classical computation**?

picture from T. Pichler, et al, Phys. Rev. X 6, 011023

picture from ELI, M. Marklund
WHY GAUGE THEORIES AND QUANTUM SIMULATIONS?

- Access to real-time dynamics: perspectives for high energy physics
- Hope (long-term): overcome limitations of experiments, classical computation?

→ LATTICE GAUGE THEORIES

Wiese, Annalen der Physik, 2013
Preskill, arXiv:1811.10085
Particles hopping around a plaquette acquire a phase
Static gauge fields

Particles hopping around a plaquette acquire a phase

Dynamical gauge fields

- additional degrees of freedom on links
Dynamical gauge fields

- additional degrees of freedom on links

\[\psi_x^i \quad U_{x,x+1}^{ij} \quad x - 1 \quad x \quad x + 1 \]

condensed matter
frustrated magnets
quantum computing
toric code
high energy physics
standard model
Dynamical gauge fields

- additional degrees of freedom on links

\[\psi^i_x \ U_{x,x+1}^{ij} \]

- Problem:
 - complex many-body interactions
 - local (gauge) symmetries

condensed matter
frustrated magnets
quantum computing
toric code
high energy physics
standard model
So far, no experimental evidence that atomic systems can simulate gauge theories at large scale

So far, no experimental evidence that atomic systems can simulate gauge theories at large scale

We show that this has been done:

U(1) GAUGE THEORY in 1+1d

exploiting dynamics induced by *Rydberg* interactions
OUTLINE

The model

- Rydberg: FSS model
- U(1) gauge: quantum link model
OUTLINE

1. The model
 - Rydberg: FSS model
 - U(1) gauge: quantum link model

2. Slow dynamics
 - Density oscillations
 - String inversion
\[\hat{H}_{\text{Ryd}} = \sum_{j=1}^{L} (\Omega \hat{\sigma}_j^x + \delta \hat{n}_j) + \sum_{j \neq \ell=1}^{L} V_{j,\ell} \hat{n}_j \hat{n}_\ell \]
RYDBERG ATOM EXPERIMENT

\[
\hat{H}_{\text{Ryd}} = \sum_{j=1}^{L} (\Omega \hat{\sigma}_j^x + \delta \hat{n}_j) + \sum_{j \neq \ell=1}^{L} V_{j,\ell} \hat{n}_j \hat{n}_\ell
\]

\[\hat{n}_j \hat{n}_{j+1} = 0\]
RYDBERG ATOM EXPERIMENT

\[
\hat{H}_{\text{Ryd}} = \sum_{j=1}^{L} (\Omega \hat{\sigma}_j^x + \delta \hat{n}_j) + \sum_{j \neq \ell=1}^{L} V_{j,\ell} \hat{n}_j \hat{n}_\ell
\]

\[\hat{n}_j \hat{n}_{j+1} = 0\]

Phase diagram, non-equilibrium dynamics (scars), ...
Fendley *PRB* 2004, Turner *Nat Phys* 2018, Lin *PRL* 2019, ...

Here: gauge theory
U(1) LATTICE GAUGE THEORIES

Matter (sites)

Fermions \{ \hat{\Phi}_i^\dagger, \hat{\Phi}_j \} = \delta_{i,j}
U(1) LATTICE GAUGE THEORIES

Matter (sites)

Fermions \(\{ \hat{\Phi}_i^+, \hat{\Phi}_j \} = \delta_{i,j} \)

Even sites: \(e^+ \)
Odd sites: \(e^- \)
U(1) LATTICE GAUGE THEORIES

Matter (sites)

Fermions

\{ \hat{\Phi}^\dagger_i, \hat{\Phi}_j \} = \delta_{i,j}

Even sites

\[e^+ \]

Odd sites

\[0 \]

Gauge fields (links)

\[[\hat{E}_{j,j+1}, \hat{U}_{j,j+1}] = \hat{U}_{j,j+1} \]
U(1) LATTICE GAUGE THEORIES

Matter (sites)

<table>
<thead>
<tr>
<th>Even sites</th>
<th>Odd sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^+</td>
<td>0</td>
</tr>
<tr>
<td>e^-</td>
<td></td>
</tr>
</tbody>
</table>

\[
\{ \hat{\Phi}_i^\dagger, \hat{\Phi}_j \} = \delta_{i,j}
\]

Gauge fields (links)

\[
[\hat{E}_{j,j+1}, \hat{U}_{j,j+1}] = \hat{U}_{j,j+1}
\]

\[
\hat{E} \rightarrow \hat{S}^z
\]

\[
\hat{E} |\uparrow\rangle = +\frac{1}{2} |\uparrow\rangle
\]

\[
\hat{U} \rightarrow \hat{S}^+
\]

\[
\hat{E} |\downarrow\rangle = -\frac{1}{2} |\downarrow\rangle
\]
U(1) Lattice Gauge Theories

Matter (sites)

- **Fermions**
 - Even sites: e^+
 - Odd sites: e^-

Gauge fields (links)

- $[\hat{E}_{j,j+1}, \hat{U}_{j,j+1}] = \hat{U}_{j,j+1}$
- $\hat{E} \rightarrow \hat{S}^z$
- $\hat{U} \rightarrow \hat{S}^+$

Local symmetry

$$\hat{G}_j = \hat{E}_{j,j+1} - \hat{E}_{j-1,j} - \left(\hat{\Phi}_j^\dagger \hat{\Phi}_j - \frac{1-(-1)^y}{2}\right)$$
U(1) LATTICE GAUGE THEORIES

Matter (sites)

Fermions

\[\{ \hat{\Phi}^\dagger_i, \hat{\Phi}_j \} = \delta_{i,j} \]

Even sites: \(e^+ \)
Odd sites: \(0 \)

Gauge fields (links)

\[[\hat{E}_{j,j+1}, \hat{U}_{j,j+1}] = \hat{U}_{j,j+1} \]

\(\hat{E} \rightarrow \hat{S}^z \)
\(\hat{U} \rightarrow \hat{S}^+ \)

Local symmetry

\[\hat{G}_j = \hat{E}_{j,j+1} - \hat{E}_{j-1,j} - \left(\hat{\Phi}^\dagger_j \hat{\Phi}_j - \frac{1-(1)^j}{2} \right) \]
U(1) Lattice Gauge Theories

Matter (sites)
- **Fermions**
 - Even sites: e^+
 - Odd sites: e^-
- \(\{ \hat{\Phi}_i^\dagger, \hat{\Phi}_j \} = \delta_{i,j} \)

Gauge fields (links)
- Electric flux:
 - \(\hat{E}_{j,j+1} \)
 - Gauss law:
 - \(\hat{E} \ket{\uparrow} = +\frac{1}{2} \ket{\uparrow} \)
 - \(\hat{E} \ket{\downarrow} = -\frac{1}{2} \ket{\downarrow} \)
- Charge:
 - \(\hat{E}_{j,j+1} = \hat{U}_{j,j+1} \)

Local symmetry
- \(\hat{G}_j = \hat{E}_{j,j+1} - \hat{E}_{j-1,j} - \left(\hat{\Phi}_j^\dagger \hat{\Phi}_j - \frac{1 - (-1)^j}{2} \right) \)
 - \(\hat{G}_j \ket{\Psi} = 0 \)
 - Gauss law:
 - \(\hat{G}_j \ket{\Psi} = 0 \)
U(1) LATTICE GAUGE THEORIES

Matter (sites)

Fermions

\[\{ \hat{\Phi}_i^\dagger, \hat{\Phi}_j \} = \delta_{i,j} \]

\begin{array}{c|c}
\text{Even sites} & e^+ \\
\hline
\text{Odd sites} & 0 \\
\end{array}

Gauge fields (links)

\[[\hat{E}_{j,j+1}, \hat{U}_{j,j+1}] = \hat{U}_{j,j+1} \]

\[\hat{E} \to \hat{S}^z \]

\[\hat{E}\ket{\uparrow} = +\frac{1}{2}\ket{\uparrow} \]

\[\hat{E}\ket{\downarrow} = -\frac{1}{2}\ket{\downarrow} \]

Local symmetry

\[\hat{G}_j = \hat{E}_{j,j+1} - \hat{E}_{j-1,j} - \left(\hat{\Phi}_j^\dagger \hat{\Phi}_j - \frac{1 - (-1)^j}{2} \right) \]

\[\hat{G}_j\ket{\Psi} = 0 \]

\[[\hat{H}, \hat{G}_j] = 0 \]
U(1) lattice gauge theory constrained by Gauss Law

e^− e^+ ✓

\[e^+ e^- \]

✗
Rydberg atoms constrained by Rydberg blockade

U(1) lattice gauge theory constrained by Gauss Law
Rydberg atoms constrained by Rydberg blockade

\[\square \]

\[\checkmark \] ✓ ✓ ✗ ✗

\[9/12 \]

U(1) lattice gauge theory constrained by Gauss Law

\[\square \]

\[\checkmark \] ✓ ✓ ✗ ✗

\[9/12 \]
There is an **exact mapping** of states and Hamiltonians
EXPERIMENT: SLOW DYNAMICS

EXPERIMENT: SLOW DYNAMICS

1) String
2) Pairs
3) Antistring
SUMMARY AND CONCLUSIONS

- U(1) lattice gauge theory is naturally realized in Rydberg atom arrays
SUMMARY AND CONCLUSIONS

- U(1) lattice gauge theory is naturally realized in Rydberg atom arrays
- Gauge theory interpretation of the dynamics
SUMMARY AND CONCLUSIONS

- U(1) lattice gauge theory is naturally realized in Rydberg atom arrays
- Gauge theory interpretation of the dynamics
- Dynamics of particle-antiparticle pairs, confinement are experimentally accessible
SUMMARY AND CONCLUSIONS

- U(1) lattice gauge theory is naturally realized in Rydberg atom arrays
- Gauge theory interpretation of the dynamics
- Dynamics of particle-antiparticle pairs, confinement are experimentally accessible

Scattering of mesons in preparation
SUMMARY AND CONCLUSIONS

- U(1) lattice gauge theory is naturally realized in *Rydberg atom* arrays
- Gauge theory interpretation of the **dynamics**
- Dynamics of particle-antiparticle pairs, confinement are **experimentally accessible**

Perspective: Non-Abelian? Higher dimensionality?
THANK YOU FOR THE ATTENTION!

Paolo P. Mazza
Giuliano Giudici
Alessio Lerose
Andrea Gambassi
Marcello Dalmonte