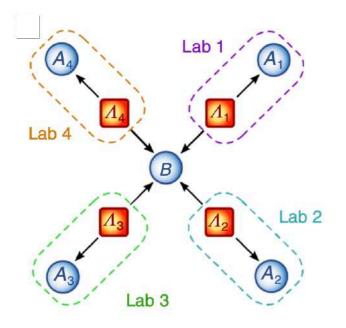

Experimental violation of n-locality in a star quantum network



QUANTUM SCIENCE SEMINAR

Gonzalo Carvacho Quantum Information Lab Università di Roma "La Sapienza"

Article | Open Access | Published: 18 May 2020

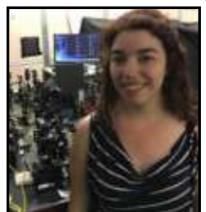
Experimental violation of *n*-locality in a star quantum network

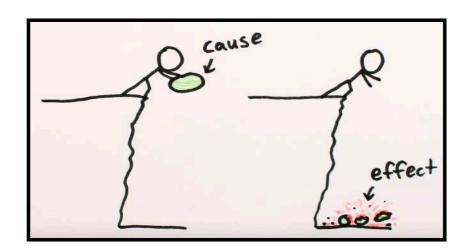
Davide Poderini, Iris Agresti, Guglielmo Marchese, Emanuele Polino, Taira Giordani, Alessia Suprano, Mauro Valeri, Giorgio Milani, Nicolò Spagnolo, Gonzalo Carvacho, Rafael Chaves & Fabio Sciarrino

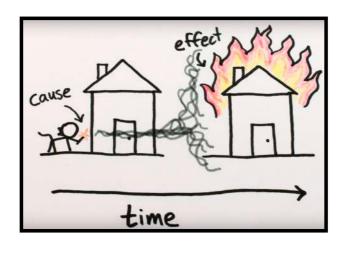
Nature Communications 11, Article number: 2467 (2020) | Cite this article

Prof. Rafael Chaves

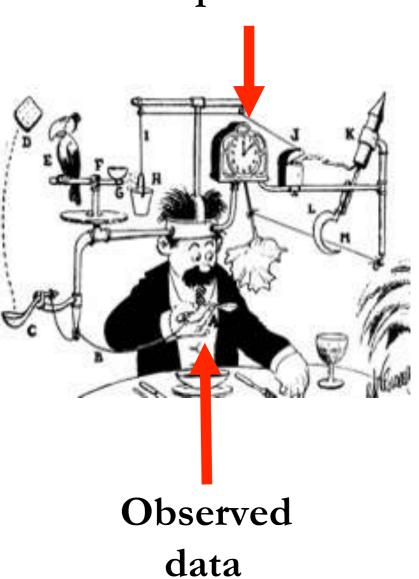
Prof. Fabio Sciarrino



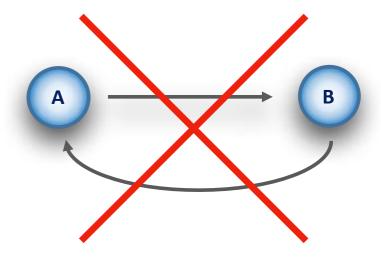



Causal Inference

Causal Inference's aim is to decide which causal models are compatible with observed data.



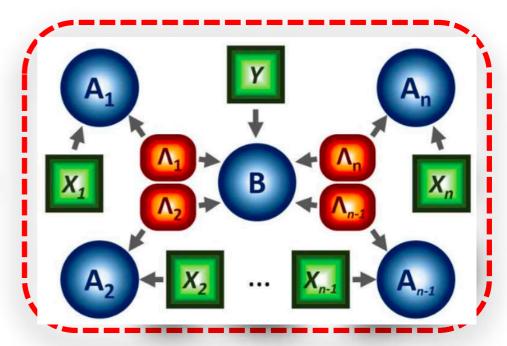
If correlation doesn't imply causation, then what does?


Causal explanation

Some definitions

Directed Acyclic Graph (DAG)

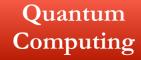
• Hidden variable



• Measurement settings

A B

Measurement outcomes



$$S \equiv \left| \mathbf{E}(\widehat{a}, \widehat{b}) \pm \mathbf{E}(\widehat{a}, \widehat{b'}) \right| + \left| \mathbf{E}(\widehat{a'}, \widehat{b}) \mp \mathbf{E}(\widehat{a'}, \widehat{b'}) \right| \leq 2$$

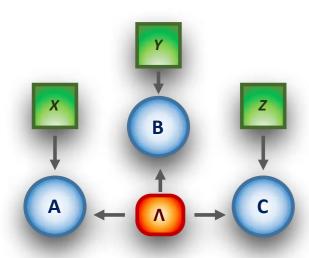
Applications of Bell Inequalities

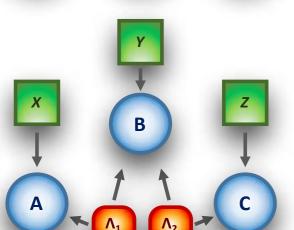
Quantum Information & Quantum Foundations

Quantum Communication

Quantum RNG

PHYSICAL REVIEW LETTERS


Characterizing the Nonlocal Correlations Created via Entanglement Swapping


C. Branciard, N. Gisin, and S. Pironio Phys. Rev. Lett. **104**, 170401 – Published 26 April 2010

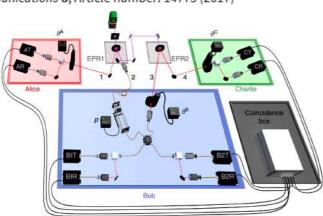
PHYSICAL REVIEW A

Bilocal versus nonbilocal correlations in entanglement-swapping experiments

Cyril Branciard, Denis Rosset, Nicolas Gisin, and Stefano Pironio Phys. Rev. A **85**, 032119 – Published 19 March 2012

Bilocal Hidden Variables (BLHV) Model

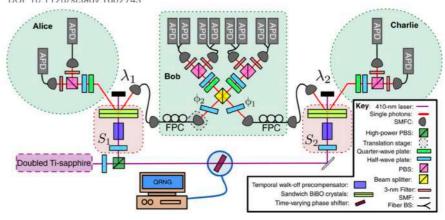
$$p(a,b,c \mid x,y,z) = \sum_{\lambda_1\lambda_2} p(\lambda_1)p(\lambda_2)p(a|x,\lambda_1)p(b|y,\lambda_1\lambda_2) p(c|z,\lambda_2)$$


$$S = \sqrt{|I_1|} + \sqrt{|I_2|} \le 1$$

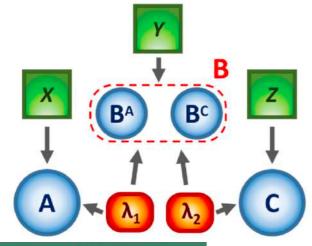
Experimental violation of local causality in a quantum network

Gonzalo Carvacho, Francesco Andreoli, Luca Santodonato, Marco Bentivegna, Rafael Chaves & Fabio Sciarrino ™

Nature Communications 8, Article number: 14775 (2017)



Science Advances


Experimental demonstration of nonbilocal quantum correlations

Dylan J. Saunders^{1,2,*}, Adam J. Bennet¹, Cyril Branciard³ and Geoff J. Pryde¹
+ See all authors and affiliations

Science Advances 28 Apr 2017: Vol. 3, no. 4, e1602743

2017

PHYSICAL REVIEW LETTERS

Nonlinear Bell Inequalities Tailored for Quantum Networks

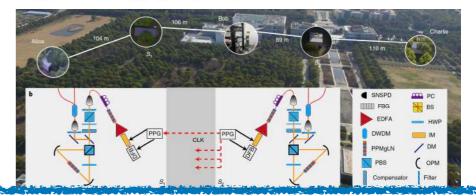
Denis Rosset, Cyril Branciard, Tomer Jack Barnea, Gilles Pütz, Nicolas Brunner, and Nicolas Gisin Phys. Rev. Lett. **116**, 010403 – Published 7 January 2016

PHYSICAL REVIEW A

ng atomic, molecular, and optical physics and quantum information

Experimental bilocality violation without shared reference frames

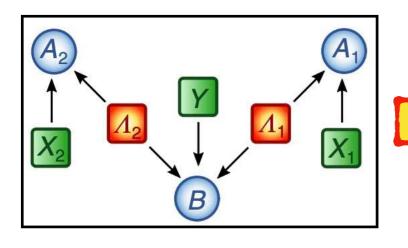
Francesco Andreoli, Gonzalo Carvacho, Luca Santodonato, Marco Bentivegna, Rafael Chaves, and Fabio Sciarrino

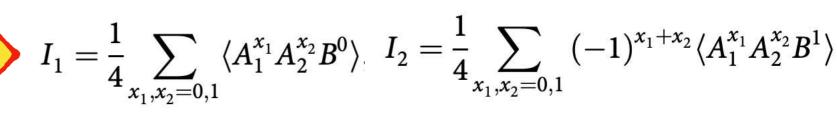

Phys. Rev. A 95, 062315 - Published 9 June 2017

nature photonics

Letter Published: 26 August 2019

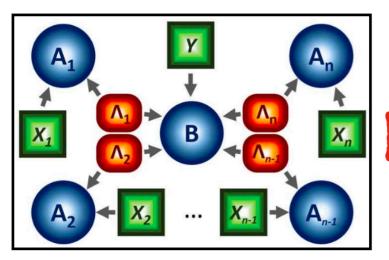
Experimental demonstration of nonbilocality with truly independent sources and strict locality constraints


Qi-Chao Sun, Yang-Fan Jiang, Bing Bai, Weijun Zhang, Hao Li, Xiao Jiang, Jun Zhang, Lixing You, Xianfeng Chen, Zhen Wang, Qiang Zhang ☒, Jingyun Fan ☒ & Jian-Wei Pan ☒



n-locality in a star-network

Bilocal case:



$$S = \sqrt{|I_1|} + \sqrt{|I_2|} \le 1$$

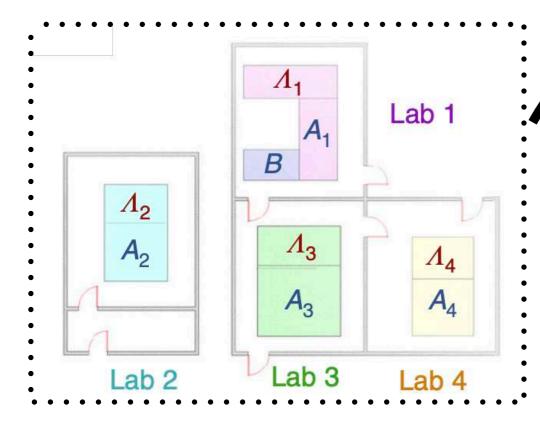
$$\langle A_1^{x_1} A_2^{x_2} B^y \rangle = \sum_{a_1, a_2, b=0, 1} (-1)^{a_1 + a_2 + b} p(a_1, a_2, b | x_1, x_2, y)_{[a_1, a_2, b=0, 1]}$$

n-local case:

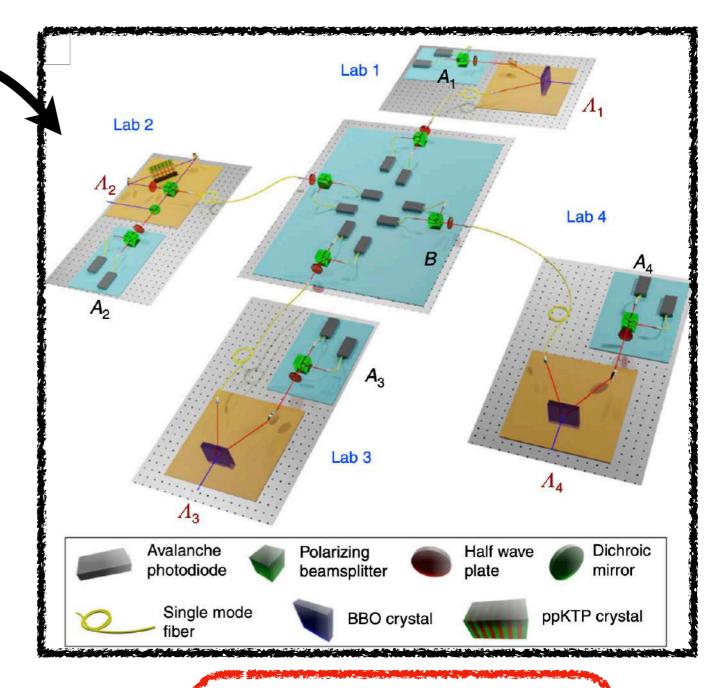
$$p(a_1 \dots a_n b | x_1 \dots x_n y)$$

assumption that the sources are independent

The inequalities make the explicit


$$= \sum_{\lambda_1,\ldots,\lambda_n} p(a_1|x_1\lambda_1)\ldots p(a_n|x_n\lambda_n)p(b|y\lambda_1\ldots\lambda_n)p(\lambda_1)\ldots p(\lambda_n)$$

$$S_n^k = \sum_{i=1}^k |I_i|^{1/n} \le k - 1$$
 $I_i = \frac{1}{2^n} \sum_{x_1, \dots, x_n = i-1}^i \langle A_1^{x_1} \cdots A_n^{x_n} B^{i-1} \rangle$



Optimal violation can be obtained through separable measurements!!!

Experimental implementation

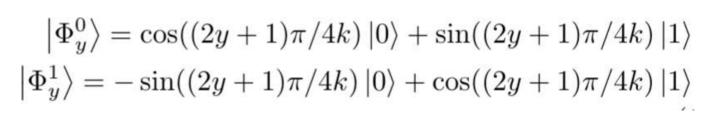
- 4 independent entangled sources.
- 4 independent lasers to pump the nonlinear crystals.
- 5 Time-taggers.
- Up to 1024 separable measurement were performed.
- Violations were obtained within a coincidence window of 80μs as well as 0.49μs.

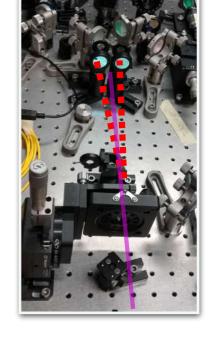
Upper bound

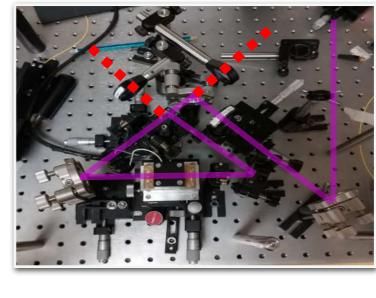
$$S_n^k = k \cos(\pi/2k)$$

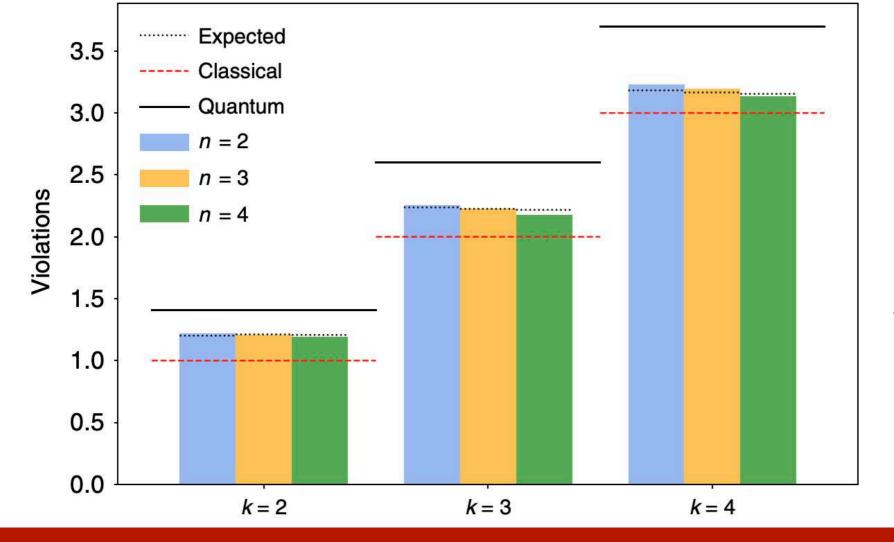
Experimental Results

Measurements


$$\begin{aligned} \left| \Psi_x^0 \right\rangle &= \cos(x\pi/2k) \left| 0 \right\rangle + \sin(x\pi/2k) \left| 1 \right\rangle \\ \left| \Psi_x^1 \right\rangle &= -\sin(x\pi/2k) \left| 0 \right\rangle + \cos(x\pi/2k) \left| 1 \right\rangle \end{aligned}$$







Non-classicality demonstrated for different number of measurement settings (k) and involved sources (n).

Ruled-out models

Non-classicality demonstration of the implemented networks with different number of nodes.

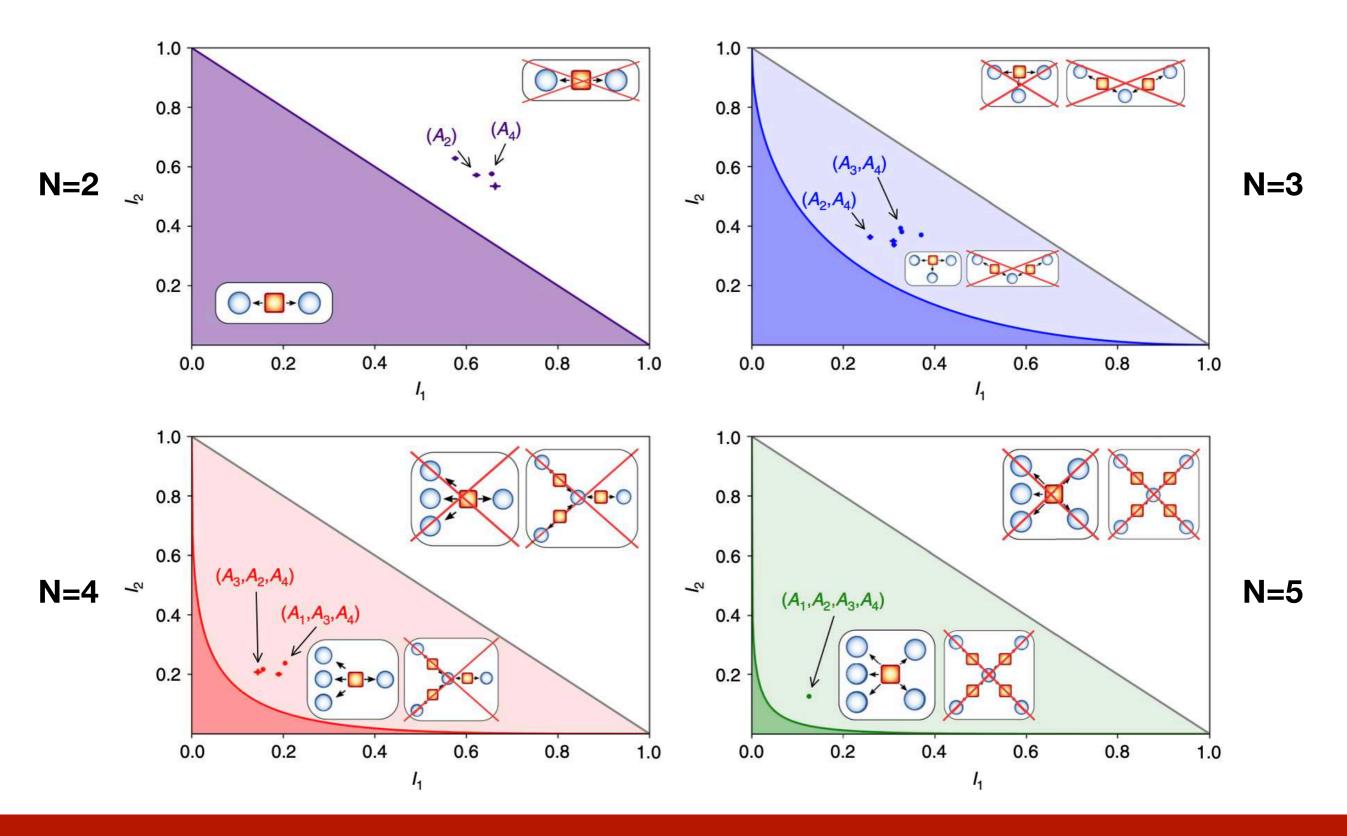
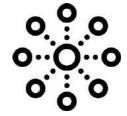


Table 1 Experimental results for different number of sources n and k=2 measurement settings.

n Sources	Combination	11	I ₂	Sops
2	A ₂ , A ₄	0.259 ± 0.007	0.363 ± 0.010	1.111 ± 0.011
	A ₃ , A ₄	0.325 ± 0.004	0.393 ± 0.004	1.198 ± 0.005
	A ₃ , A ₂	0.310 ± 0.008	0.350 ± 0.010	1.147 ± 0.011
	A_1 , A_4	0.3279 ± 0.0017	0.381 ± 0.003	1.190 ± 0.003
	A_1 , A_2	0.311 ± 0.006	0.337 ± 0.009	1.138 ± 0.010
	A ₁ , A ₃	0.370 ± 0.003	0.371 ± 0.003	1.217 ± 0.003
3	A_3, A_2, A_4	0.145 ± 0.009	0.207 ± 0.010	1.116 ± 0.015
	A_1, A_2, A_4	0.156 ± 0.005	0.217 ± 0.007	1.139 ± 0.009
	A_1, A_3, A_4	0.204 ± 0.005	0.238 ± 0.005	1.208 ± 0.006
	Age Age Age	0.100 + 0.007	0.200+0.008	1160+0.010
4	A_1, A_2, A_3, A_4	0.125 ± 0.005	0.125 ± 0.005	1.190 ± 0.008

The table shows the experimental values of I_1 , I_2 , and S^{obs} for each possible combination of parties $\{A_1, ..., A_4\}$.

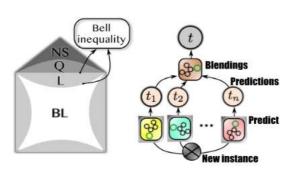

Table 2 Experimental results for different number of sources n and measurement settings k.

n Sources	k Settings	Sobs	Classical	Violation σ	S ^{sim}	So
2	2	1.217 ± 0.003	1	72	1.201 ± 0.007	1.41
	3	2.253 ± 0.002	2	127	2.237 ± 0.010	2.60
	4	3.2261 ± 0.0014	3	162	3.182 ± 0.014	3.70
3	2	1.208 ± 0.006	1	35	1.211 ± 0.005	1.41
	3	2.227 ± 0.003	2	76	2.225 ± 0.009	2.60
	4	3.195 ± 0.002	3	97	3.165 ± 0.013	3.70
4	2	1.190 ± 0.008	1	24	1.207 ± 0.005	1.41
	1	2.177 ± 0.005	2	55	2 218 + 0 008	2.60
	4	3.135 ± 0.004	3	34	3.154 ± 0.012	3.70

The values of S^{obs} , S^{sim} , and S^{Q} are the observed, the expected, and the maximum quantum violation, respectively. S^{sim} has been computed using the state visibility estimated by Bell violations performed in each single source.

Summary and perspectives

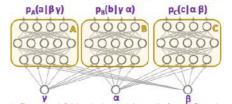
- We experimentally performed a scalable quantum network with:
- Increasing number of sources.
- Increasing number of measurement settings.
- Certification of nonlocal correlations among the parties.

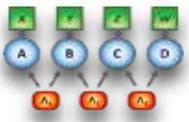


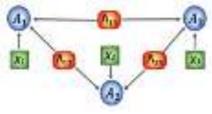
Machine Learning for characterizing non-local correlations

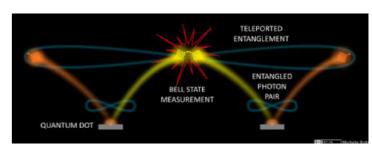
PHYSICAL REVIEW LETTERS 122, 200401 (2019)

Machine Learning Nonlocal Correlations


Askery Canabarro, 1,2 Samuraí Brito, 1 and Rafael Chaves 1,3


npj Quantum Information


A neural network oracle for quantum nonlocality problems in networks


Tamás Kriváchy^{1™}, Yu Caioo¹, Daniel Cavalcanti², Arash Tavakolioo³, Nicolas Gisinoo¹ and Nicolas Brunner¹

Experimental realization of more complex networks

Phys. Rev. Lett. 123, 160501 - Published 14 October 2019