Continuous-wave BECs and superradiant clocks

Florian Schreck University of Amsterdam

Classical vs. quantum sensors

Task: build the best clock in the world

Highest accuracy

High transition frequency	\rightarrow	optical transitions
Narrow transition	\rightarrow	mHz linewidth
Large signal	\rightarrow	use many atoms
Undisturbed by other atoms	\rightarrow	use gas of atoms
No Doppler shift	\rightarrow	cool atoms to standstill

Laser cooling

Š Magneto-optical trap of strontium

Optical clock scheme

Frequency reference ultracold Sr atoms in lattice

Atom interferometry

Detection of

- acceleration (gravity, gravity gradient)
- rotation

Also profits from ultracold atoms

Laser interferometer

Gravitational wave detection

The Virgo collaboration/CCO 1.0

Applications

Fundamental science

Beyond Standard Model physics Tests of relativity Do fundamental constants change? Dark matter searches QED tests

Explore many-body physics

happening in quantum sensors: spin models, gauge fields,...

Astronomy

Infrasound gravitational wave detectors Very-long baseline interferometry

Society

Network synchronization Navigation Underground exploration

Optical and atom lasers

Advantages of lasers

Better

- brightness
- divergence
- spatial mode structure
- coherence

Potential for squeezing

Creating an atom laser

Continuous-wave BEC

State-of-the-art: *pulsed* atom laser

Quasi-continuous mode of operation:

- BEC creation takes seconds
- BEC decays by e.g. molecule formation
- atom laser pulse << 1s

Bad for precision measurement:

- Loss of phase coherence
- Pulsed operation introduces noise (Dick effect)
- Low average flux

Our goal: *continuous* atom laser

Challenges

- Poor laser cooling performance of alkalis and chromium
- BEC incompatible with laser cooling

Steps towards goal

Periodically replenish BECKetterle group, Science 296, 2193 (2002)Continuous evaporationGuéry-Odelin group, PR A 72, 033411 (2005)
Raithel group, PR A 73, 033622 (2006)Pumping mechanismClose group, nature physics 4, 731 (2008)Continuous trap loadingPfau, Griesmaier group, New J. Phys. 15 093012 (2013)
Klempt group, J. Phys. B 48, 165301 (2015)

Our tricks

Narrow line cooling

BEC using dimple trick

💐 Transparency beam

💐 Transparency beam

dipole trap

💐 Transparency beam

transparency

³P₁

Transparency beam X

³S₁

transparency

³P₁

with

Transparency beam

New requirements

1) Pumping: replenish atoms

Challenge: BEC not protected from blue photons

Blue stray light protection

Challenge: BEC not protected from blue photons

Design and construction

Design and construction

Dipole guide to darkness

Dipole guide to darkness

BEC in steady-state?

In situ

18 ms expansion

BEC detection

BEC detection

Characterization of steady-state

 BEC:
 N = 7.4(2.4) x 10^3 ⁸⁴Sr atoms Replenishment rate 10^5 atoms/s

 Dimple:
 N = 6.9(4) x 10^5 T_{vertical}
 = 1.08(3) μ K

 Reservoir:
 N = 7.3(1.8) x 10^5 Loading rate $1.1(4) \times 10^6$ atoms/s

- Model assuming thermalized gas does not describe data.
 Model assuming enhanced occupation of higher trap states fits data.
 Signature of driven, dissipative nature of system?
- Future direction: driven-dissipative many-body physics

BEC purity oscillationsPhys. Rev. Lett. 88, 170403 (2002),Phys. Rev. A 93, 033617 (2016)new critical exponentsPhys. Rev. Lett. 110, 195301 (2013)unusual quantum phases, especially in lower dimensionsPhys. Rev. Lett. 118, 085301 (2017)

Driven-dissipative BECs created with

exciton-polaritons	Rev. Mod. Phys. 82, 1489 (2010
magnons	Nat. Phys. 4, 198 (2008)
photons	Nature 468, 545 (2010)

Creating an atom laser: method 1

Creating an atom laser: method 2

Add evaporative cooling, e.g.

Slowdown using e.g. Sisyphus optical lattice decelerator, Phys. Rev. A 100, 023401 (2019) Enhance Sr laser cooling scheme, e.g. Katori group, Phys. Rev. A 103, 023331 (2021)

Rodrigo González Escudero atom laser lab tour

10

30

 \triangleright

<

ひ))

00:01:24

0

8

Optical lattice clock scheme

Frequency reference ultracold Sr atoms in lattice

Frequency reference

ultracold Sr atoms in lattice

Oltrastable resonators

Limit: thermal length changes of spacer

Silicon monocrystal cavity

Crystalline mirror coatings

Limit: thermal noise in coatings

PTB, 8×10^{-17} fractional laser frequency instability with a long room-temperature cavity, Optics Lett. 40, 2112 (2015)

PTB, JILA: 1.5 µm Lasers with Sub-10 mHz Linewidth, Phys. Rev. Lett. 118, 263202 (2017)

Aspelmeyer group, Tenfold reduction of Brownian noise in high-reflectivity optical coatings, Nature photonic 7, 644 (2013)

Passive clock

Active, superradiant clock

Continuous ultracold strontium beam in

Clock laser beam out

Comparison to standard laser

Standard laser: frequency stability from length of cavity

Superradiant clock laser: frequency stability from ensemble spin of atoms

Active optical clock

Goal: photons from mHz linewidth transition

Challenges:

٠

- minutes of excited state lifetime
- emission into 4π

Solution: enhance emission into single mode by superradiance

Jingbiao Chen, arXiv:physics/0512096 (2005), Chinese Science Bulletin **54**, 348 (2009) D. Meiser, J. Ye, D. R. Carlson, M. J. Holland, PRL **102**, 163601 (2009)

Phased array of N emitters

Closer spaced than wavelength Random phase

Closer spaced than wavelength Same phase

Spaced wavelength/2 along axis Alternating phase

Electric field

Random interference

E-field ~ Sqrt(N) Power ~ N

Constructive interference E-field ~ NPower ~ N^2

Constructive interference along axis

Power along axis ~ N^2

Bow is superradiance established? Ø

Q Superradiant lasers

James Thompson group, JILA:

pulsed superradiance Rb Raman transition, Nature, **484**, 78 (2012) pulsed superradiance on Sr mHz transition, Science Advances, **2**, e1601231 (2016)

Andreas Hemmerich group (Hamburg): Jan Thomsen group (Copenhagen): Related: Jingbiao Chen group (Beijing):

pulsed Ca superradiance on 379-Hz transition, pulsed Sr superradiance on kHz transition,

continuous Cs bad-cavity laser on 1.8-MHz transition,

PRL **123**, 103601 (2019) PR A **101**, 013819 (2020)

IEEE Trans. Ultrason. Ferroelectrics. Freq. Contr. 65, 1958 (2018)

Weight How can superradiance be maintained?

Continuous superradiant microwave emission, used as frequency reference

Continuous superradiant Sr lasers

Version 1

kHz transition hot atomic beam

Version 2

mHz transition continuous ultracold beam from periodically refilled reservoir

Version 3

mHz transition continuous ultracold beam

Jingbiao Chen *Active Optical Clock* arXiv:physics/0512096 (2005), Chinese Science Bulletin **54**, 348 (2009)

H. Liu, S. B. Jäger, X. Yu, S. Touzard, A. Shankar, M. J. Holland, and T. L. Nicholson *Rugged mHz-Linewidth Superradiant Laser Driven by a Hot Atomic Beam* PRL **125**, 253602 (2020)

Key requirements

- sufficient atom flux
 - ~ 10¹² atoms/s through cavity mode
 - ~ 10⁵ atoms in cavity mode
- low velocity along cavity

~ 0.4 m/s

Expected performance V1.1

- Linewidth ~ 100 Hz
- Power ~ 100 nW

Jingbiao Chen *Active Optical Clock* arXiv:physics/0512096 (2005), Chinese Science Bulletin **54**, 348 (2009)

H. Liu, S. B. Jäger, X. Yu, S. Touzard, A. Shankar, M. J. Holland, and T. L. Nicholson *Rugged mHz-Linewidth Superradiant Laser Driven by a Hot Atomic Beam* PRL **125**, 253602 (2020)

Jingbiao Chen Active Optical Clock

arXiv:physics/0512096 (2005), Chinese Science Bulletin 54, 348 (2009)

H. Liu, S. B. Jäger, X. Yu, S. Touzard, A. Shankar, M. J. Holland, and T. L. Nicholson *Rugged mHz-Linewidth Superradiant Laser Driven by a Hot Atomic Beam* PRL **125**, 253602 (2020)

Continuous superradiant Sr lasers

Version 1

kHz transition hot atomic beam

Version 2

mHz transition continuous ultracold beam from periodically refilled reservoir

Version 3

mHz transition continuous ultracold beam

Continuous mHz-transition superradiant lasers

D. Meiser, J. Ye, D. R. Carlson, M. J. Holland, *Prospects for a Millihertz-Linewidth Laser* PRL **102**, 163601 (2009)

Continuous ultracold strontium beam in

Clock laser beam out

Key requirements

• confine atoms along cavity

 μK temperature beam

- protect superradiant ensemble from laser cooling photons
- sufficient atom flux
 - ~ 10^{5 87}Sr or 10^{6 88}Sr atoms in cavity mode

Expected performance V2.1

- Linewidth ~ mHz
- Power ~ 1pW

Continuous mHz-transition superradiant lasers

V2 continuous ultracold beam from periodically refilled reservoir

V3 continuous ultracold beam

Francesca Famá iqClock lab tour

30

 \triangleright

10

00:02:30

(1))

iqClock – integrated quantum clock

Main objectives

- bring optical clocks from lab to society
- kick-start European optical clock industry

Industry partners

Collaboration

Te2v	Teledyne e2v	Murray Holland group
Toptica	Toptica	Travis Nicholson group
NKT	NKT Photonics	
Acktar	Acktar	
Chronos	Chronos	
ВТ	British Telecom	

Academic partners

UvA	University of Amsterdam
UoB	The University of Birmingham
UMK	Nicolaus Copernicus University
UCPH	Copenhagen University
TUW	Technical University of Vienna
UIBK	University of Innsbruck

Our projects

Quantum sensing

Continuous atom laser

Quantum simulation

RbSr molecules

Quantum Flagship

M. J. Holland & T. L. Nicholson groups

Superradiant clock

Rydberg coupled Sr atoms

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

