

Quantum nonlinear optics based on 2D Rydberg atom arrays

Daniel Goncalves Romeu

ICFO, April 2021 Image from: *Physics* 12, 76 (2019)

ArXiv: 2101.01936 (2021)

Dr. Mariona Moreno-Cardoner (UIBK, UB) Prof. Darrick Chang (ICFO)

1. Motivation

Very nonlinear, but low atom-light coupling

1. Motivation

Increased coupling, but low nonlinearity

1. Motivation

■ Strong nonlinearity, but system is dissipative. Reduces efficiency of implementations such as photon gates (~ $R_h^{-3/2}$). Typical values for photon-pair loss $\ge 90\%$.

Nature 542, 206 (2017)

Nat. Phys. **15**, 124–126 (2019)

2. Ingredients for our photon gate

■ 2D Array ≈ perfect mirror

■ Rydberg excitation ≈ Aperture in the mirror

2.1. 2D arrays as perfect mirrors

- Consider an incident plane wave
- Spatial periodicity defines diffraction orders
- For sub-λ lattice constant, most become evanescent
- On resonance, there is **only one possible mode**
- The **Perfect reflection**: *R* = 1, 100% **lossless** interaction
- Still a good approximation for realistic system (R > 95%, numerics)

 \approx

5/10

2.2. Nonlinearities in the mirror

How much nonlinear is this mirror?

We use $g^{(2)}$, quantifies "effect" of reflecting one photon in the reflection of a 2nd photon

If $g^{(2)} = 1 \rightarrow$ Linear If $g^{(2)} < 1 \rightarrow$ nonlinear

2.2. Nonlinearities in the mirror

How much nonlinear is this mirror?

We use $g^{(2)}$, quantifies "effect" of reflecting one photon in the reflection of a 2nd photon

If $g^{(2)} = 1 \rightarrow$ Linear If $g^{(2)} < 1 \rightarrow$ nonlinear

2.2. Nonlinearities in the mirror

How much nonlinear is this mirror?

We use $g^{(2)}$, quantifies "effect" of reflecting one photon in the reflection of a 2nd photon

If $g^{(2)} = 1 \rightarrow$ Linear

Single-atom hole in a mirror with N_i illuminated atoms

$$g^{(2)} \sim \left(1 - \frac{1}{N_i}\right)^2$$

Nonlinearity is negligible in practice $(g^{(2)} \approx 1)$

- We would like to increase non-linearity \rightarrow increase hole size
- First, store one photon in a Rydberg state with a control field

- We would like to increase non-linearity \rightarrow increase hole size
- First, store one photon in a Rydberg state with a control field

- We would like to increase non-linearity \rightarrow increase hole size
- First, store one photon in a Rydberg state with a control field

2

r_{.i}/R_b

- We would like to increase non-linearity \rightarrow increase hole size
- First, store one photon in a Rydberg state with a control field
- Second, detune control field → Rydberg dressing. Blockade mechanism is communicated to the |e⟩ levels

yielding a **dressing-induced** interaction potential $|V(r_{ij})|$

- We would like to increase non-linearity \rightarrow increase hole size
- First, store one photon in a Rydberg state with a control field
- Second, detune control field → Rydberg dressing. Blockade mechanism is communicated to the |e⟩ levels

Presence of $|r\rangle$ disrupts dressing, yielding a **dressing-induced** interaction potential $|V(r_{ij})|$

Transmitting scenario (1)

Signal photon

Step 2: Signal photon

3.1. Photon switch optimization and conclusions

 Switch: Transmission/Reflection of signal photon is conditioned to the storage of a gate photon. For a given blockade radius:

• Switch error: Maximal error between transmission and reflection

$$\epsilon^{opt} \approx C(d) \frac{\log^2(R_b/d)}{R_b^4} \sim R_b^{-4}$$
 , which beats $R_b^{-3/2}$

Simulations for finite array and realistic Rydberg dressing yield a **photon loss below 5%.** We can achieve **strong, nonlinear photon-photon interactions with low dissipation**.

Thank you for you attention!

Questions