

A short story of quantum and information thermodynamics

Alexia Auffèves Institut Néel - CNRS & Université Grenoble-Alpes

Quantum Science Seminar, April 29, 2021

Outline

- Thermodynamics, from classical to quantum
- Thermodynamics of quantum measurement
- Measurement-powered quantum engines
- Application to quantum information technologies

Outline

- > Thermodynamics, from classical to quantum
- Thermodynamics of quantum measurement
- Measurement-powered quantum engines
- Application to quantum information technologies

Macroscopic thermodynamics

- Engines (or how turning lead into gold)
- 1st Law

- Irreversibility, fundamental bounds, no-gos
- 2nd Law

Kelvin Planck no-go

« One cannot extract work continuously from a single hot source »

$$W_1 = -T_1 \Delta S$$

$$W_1 \le 0$$

$$W_2 = -T_2 \Delta S$$

$$W_2 \ge 0$$

Carnot engine

- Work extraction = Expansion in a hot source
- Need to reset = Compression in a cold source

Maxwell's demon paradox

Maxwell's demon

- Use information to reset the engine at no work cost
- Violation of the second Law?

- Resolution of the paradox
- « Information is physical » Landauer 1961 + Bennett, Szilard...
- Need to erase the demon's memory to close the cycle

Information thermodynamics

- > 1 bit of memory 0,1 is the working substance
- New interpretation of Carnot engine

Information thermodynamics

A more realistic realization of a « bit of memory »

- Toyabe, Ueda, Sano, Nature Physics 2011
- Information induced rectification

- Ciliberto, Lutz, Nature 2011
- Readout of Landauer's erasure work

Stochastic thermodynamics

Work extraction from thermal fluctuations

⇒ Nano engines
⇒ Information engines

Thermal fluctuations =>
Lack of control
Irreversibility &
Fundamental bounds

« Stochastic » thermodynamics is based on randomness

Quantum thermodynamics?

- Do quantum engines outperform classical engines?
- Work cost of quantum computation?
- Quantum Maxwell's demons?
- Quantum irreversibility?...

Outline

- > Thermodynamics, from classical to quantum
- Thermodynamics of quantum measurement
- A measurement-powered quantum engine
- Application to quantum information technologies

Measurement: The ultimate dice

- Quantum measurement perturbs the system's state
- The perturbation is random
- Quantum fluctuations

Example

- Initial state:
- $|+_x>=(|0>+|1>)/\sqrt{2}$
- Measurement « along z »
- The qubit is either projected on |o> or |1>
- Probability P(0)=P(1)=1/2

Measurement: The ultimate dice

- Quantum measurement perturbs the system's state
- The perturbation is random
- Quantum fluctuations

Example

- Initial state:
- $|0> = (|+_x> + |-_x>)/\sqrt{2}$
- Measurement « along x »
- The qubit is either projected on |+_x> or |-_x>
- Probability P(+)=P(-)=1/2

Rebuilding thermodynamics on quantum measurement

Scenery and definitions

- Pure initial state $|\psi(t_o)\rangle$

Stochastic quantum trajectory |ψ_ν(t)>

• Internal energy: $U_{\gamma}(t) := \langle \psi_{\gamma}(t) | H(t) | \psi_{\gamma}(t) \rangle$

First Law

- Work is exchanged during the continuous (unitary) evolutions. Deterministic energy exchange with the controlling device
- « Quantum heat » is exchanged during the quantum jumps. Stochastic energy exchanges induced by quantum measurement.
- 1st Law guaranteed by construction
- $\bullet \quad \Delta U_{\gamma} = W[\gamma] + Q_{q}[\gamma]$

Example 1

System: a Qubit, $H=[hv_0/2] \sigma_{Z}$

Transformation: (i) Preparation in $|+_x\rangle$ (ii) Measurement of σ_z

2 « stochastic trajectories »:

•
$$\gamma_1 = [|+_x>, |0>]$$

•
$$\gamma_2 = [|+_x>, |1>]$$

Energetic balance

- \triangleright Initial energy $U_i = 0$
- Final energy $U_f = \pm h v_0/2$
- $\Delta U[\gamma] = \pm h \nu_0 / 2 = Q_q[\gamma]$
- Energetic footprint of quantum noise: Quantum heat
- A purely quantum term due to « measurement backaction »

Example 2

System: a Qubit, $H = [h\nu_0/2] \sigma_{Z}$

Transformation: (i) Preparation in |0> (ii) Measurement of σ_x

2 stochastic trajectories:

- $\gamma_1 = [|0>, |+_x>]$
- $\gamma_2 = [|0>, |-x>]$

Energetic balance

- ightharpoonup Initial energy $U_i = -h\nu_0/2$
- Final energy $U_f=0$ $< \Delta U[\gamma]> = h\nu_0/2 = < Q_q[\gamma]>$
- $[M, H] \neq 0 => Quantum heat is transferred on average$
- Let us use this property to build a quantum engine

Outline

- Thermodynamics, from classical to quantum
- Thermodynamics of quantum measurement
- Measurement-powered quantum engines
- Application to quantum information technologies

The strategy

Rabi oscillation

A qubit coupled to a resonant field:

Coherent and reversible energy

exchange between the qubit and
the field = « Rabi oscillation »

Basic mechanism of the engine

The qubit exchanges work with a resonant driving field

- |+_x> = good for work extraction ☺
- |-x> = bad for work extraction ⊗

Basic mechanism of the engine

- Solution: Stabilize the qubit in |+x>
- \triangleright Measurement of σ_X
- Feedback in |+x>

- New quantum Maxwell's demon experiment
- Energy <Q_q> is extracted from the measurement and converted to work <W>

o. Initialize in |+_x> and couple to a resonant field

Readout
 Quantum heat
 exchange

4. Memory erasure Landauer's work $W_{er} = T_D S_D$

Entropy of the demon's memory $S_D = H[P_\theta]$ H[P] Shannon's entropy

$$H[P] = -P \log(P) - (1 - P) \log(1 - P)$$
 with $P_{\theta} = \cos^{2}(\theta)$

$$\theta \sim \pi/2$$
 $P_{\theta} = 1/2$
 $S_D = 1 \ bit$

- Maximal uncertainty on the measurement outcomes
- Maximal entropy

4. Memory erasure Landauer's work $W_{er} = T_D S_D$

Entropy of the demon's memory $S_D = H[P_\theta]$ H[P] Shannon's entropy

$$H[P] = -P \log(P) - (1 - P) \log(1 - P)$$
 with $P_{\theta} = \cos^{2}(\theta)$

- Certain result
- Zeno regime

MPE performances: Yield

Engine's yield:

$$\eta(\theta) = 1 - \frac{W_{er}}{Q_a}$$

 W_{er} erasure work Q_a quantum heat

$$\eta$$
 minimal for $\theta = \frac{\pi}{2}$

heta o 0 : Zeno limit

- Qubit « frozen » in the |+x> state
- $W_{er} \approx \theta^2 \ln(\theta) \sim 0$: Yield η ->1
- Perfect conversion of the quantum heat into work

MPE performances: Extracted power

Zeno limit: Qubit « frozen » in the $|+_x>$ state

- W_{ext} -> $h\nu_0\theta/2$; $\theta=\Omega dt$, $P->P_{max}=\Omega h\nu_0/2$
- Power and yield simultaneously optimized

First batch of take home messages

- Build up of a consistent thermodynamic framework, on the sole randomness induced by the measurement postulate
- Irreversibility of quantum nature
- Energy transfers of quantum nature = « quantum heat »
- Build up of measurement-powered engines
- ⇒ Extension to multi-partite working substance?
- \Rightarrow Role of entanglement?

First batch of take home messages

- Build up of a consistent thermodynamic framework, on the sole randomness induced by the measurement postulate
- Irreversibility of quantum nature
- Energy transfers of quantum nature = « quantum heat »
- But measurement is also related to information extraction = work cost
- Are measurement induced energy transfers heat or work??

Editors' Suggestion

Two-Qubit Engine Fueled by Entanglement and Local Measurements

Léa Bresque, Patrice A. Camati, Spencer Rogers, Kater Murch, Andrew N. Jordan, 4 and Alexia Auffèves, Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

3 Department of Physics, Washington University, St. Louis, Missouri 63130, USA

4 Institute for Quantum Studies, Chapman University, Orange, California 92866, USA

A two-qubit engine powered by entanglement and local measurements

26 April 2021, by Ingrid Fadelli

Extracting energy from quantum measurement, part 2

Extracting energy from quantum measurement, part 2

Dynamical insights

Dynamical insights

$$< H_{2qb}> = \hbar \omega_A$$
 Energy conservation $N_A + N_B = 1$ Excitation conservation

$$< H_{loc} > = \hbar \delta N_A(t) + \hbar \omega_B$$
 oscillates
=> $< V >$ oscillates

$$\checkmark$$
 < V > « binding energy »

$$\checkmark < V >$$
 minimal for $t_0 = \pi/\Omega$

Dynamical insights

$$|\psi(t)> = \alpha(t)|10> +\beta(t)|01>$$

$$V = \frac{\hbar g}{2} (\sigma_A^+ \sigma_B + \sigma_B^+ \sigma_A)$$

< $V(t) > = \hbar g \operatorname{Re}[\alpha \beta^*]$

Projective measurement => Coherence erasure => Energy gain $E^{\text{meas}} = - < V(t_0) >$

Two-qubit engine powered with entanglement and local measurements

- i) Entangling operation
- ii) Measurement
- iii) Feedback and work extraction
- iv) Erasure

Origin of the measurement fuel

✓ So far, measurement fuel treated as heat = energetic fluctuations stemming from the instantaneous projective measurement

Origin of the measurement fuel

- Going beyond: model the measuring channel using Von Neumann two-step approach
- Who pays for the fuel?
- Is it work or heat?

Modeling the pre-measurement

Modeling the pre-measurement

$$\varepsilon = g/\chi \ll 1$$
Perturbation parameter

Short measurement compared to Rabi period

Qubits-meter evolution

$$\varepsilon = g/\chi \ll 1$$
perturbation
parameter
$$y = \frac{\chi(t)}{t_0} |_{0_m} > |_{1_m} > \frac{\chi}{t_0}$$

Energetic analyzis

$$G = \frac{\chi(t)}{2}$$

$$W_{bal} = \chi(t)$$

$$\chi(t)$$

Thermodynamic system: Qubit A, Qubit B, quantum meter M

- $t \in]t_0, t_m[:ABM \text{ isolated system =>} < H_{tot}(t) > \text{constant}]$
- $t=t_0$, t_m : An agent switches on and off the measurement channel \Rightarrow Work input $<\Delta H_{tot}(t)>=W(t)=<\Delta V_m(t)>$
- $t = t_0$: $< \sigma_x^m > = 0 \Rightarrow W(t_0) = 0$

Energetic flows $(t \in]t_0, t_m[)$

 $< H_{loc} >$ constant during the measurement ($\chi \gg g$)

$$< V(t) > = < \Psi^{(0)}(t) |V| \Psi^{(0)}(t) >$$
 at first order in ε $|\Psi^{0}(t_{m})> = c|100_{m}> + s|011_{m}> \Rightarrow < V(t_{m})> = 0$ $\Rightarrow < \Delta V > = -V(t_{0}) = E^{meas} = < \Delta H_{2qb} >$

✓ One recovers the expected behavior for the qubits system (increase of energy and entropy)

Energetic flows $(t \in]t_0, t_m[)$

 $< H_{tot} >$ constant during the measurement (isolated system)

$$< V_m(t) > + < V(t) >$$
 constant
 $\Rightarrow < \Delta V_m > = - < \Delta V > = - E^{meas}$

✓ The binding energy initially localized between the qubits is now localized between the qubits and the meter

Energetic flows $(t = t_m)$

While the measurement channel is switched off:

 $\overline{<H_{loc}>,<V>,<H_{2qb}>}$ remain constant $<\Delta V_m>=E^{meas}$ = Work provided by the agent to the ABM joint system

Work or heat?

Projective measurement on AB

- ✓ Increase of energy and entropy
- ✓ Irreversible transformation
- ✓ « Quantum heat »

Entanglement of AB with meter M

- Reversible, entropy preserving energy input on ABM => « Work »
- ✓ Irreversible energy input on AB => « Heat »

Is quantum heat fundamental?

It depends on your favourite interpretation...

- Measurement = creation of massive entanglement by unitary transformations
- ✓ Reversible, entropy preserving
- ✓ Measurement energy= Work
- ✓ Typical interpretation: Everett

Is quantum heat fundamental?

It depends on your favourite interpretation...

Von Neumann's legacy

- ✓ Always a classical measurement that ends the channel
- ✓ Irreversible, not entropy preserving
- Measurement energy is fundamentally heat

Outline

- Thermodynamics, from classical to quantum
- Thermodynamics of quantum measurement
- > A measurement-powered quantum engine
- Application to quantum information technologies

Is there a quantum energetic advantage?

- Google Sycamore: 25kW
- IBM Summit: 10MW
- => Scaling laws for universal quantum computer?

Fundamental arguments for energetic quantum advantage

- Quantum logic offers gain in complexity
- Quantum logic is reversible

Ideal situation

Real situation

Fighting the noise in 3 steps

1)Isolate your processor, but communicate with the outside world!

2)Compute faster than the noise rate, but don't burn your processor!

3)Correct errors => Add physical qubits, but don't add noise!

Want less noise? Pay more!

Example: superconducting qubits

Cryogenic cost:
$$P_C = \epsilon \dot{Q} \left(\frac{T}{T_q} \right), \epsilon > 1$$

- Lower \(\epsilon \) the cryogenic yield
- Increase T_q the qubit operating temperature
- Lower \dot{Q} the heat dissipation rate

Example: superconducting qubits

Cryogenic cost:
$$P_C = \epsilon \dot{Q} \left(\frac{T}{T_q} \right)$$

Today: μ -wave generation and control electronics at room temperature

$$T = 300K$$
, $T_q = 1mK$

Macroscopic heat dissipation \dot{Q}

- Attenuators
- Conduction losses
 Typically
 mW/cable

Towards fully autonomous scenarios

Tomorrow:

 \triangleright on-chip μ -wave generation, readout electronics, error correction

Cryo-electronics: $\dot{q} \approx 1 mW$ /active gate Scales like the number of physical qubits \otimes

$$P_C = \epsilon \dot{q} \left(\frac{T}{T_q} \right)$$

- ⇒ Need to reduce the footprint of classical control
- \Rightarrow Reversible computing
- ⇒ Fundamental cost will scale like the remnant noise rate

Interdisciplinary challenges for energetic scalability solutions

Hardware

- increase the operating temperature
- lower the noise level
- new qubits engineering

Information processing

- adiabatic/reversible computing (« beyond Landauer » paradigm)
- autonomous scenarios

Cryogeny

- improve cooling efficiency
- lower conduction losses

Architecture

- code connectivity
- qubits addressing

Fundamental physics

 energetic lower bounds (computing, cooling) for arbitrary quantum noise

Going further

- A.Auffèves, A short story of classical and quantum thermodynamics, arXiv 2102.00920, to appear in « Quantum Information Machines; Lecture Notes of the Les Houches Summer School 2019 », eds. M. Devoret, B. Huard, and I. Pop
- M.Fellous-Asiani, J.H. Chai, R. Whitney, A. Auffèves, H.K. Ng, Limitations in quantum computing from resource constraints, arXiv 2107.01966
- A. Auffèves, Optimiser la consommation énergétique des calculateurs quantiques – Un défi interdisciplinaire, to appear in Reflets de la Physique
- M.Fellous-Asiani, et al, Energetic scalability of a « full stack » quantum computer, in prep.

Thanks! Theory group at Institut Néel

M. Fellous-Asiani, PhD

B. Goes, PhD

L. Bresque, PhD

J.H. Chai, post-doc

S. Wein, post-doc

M. Maffei, post-doc

P. Camati, post-doc

N. Piccione, post-doc

S. Prasad, PhD

I. Frérot, post-doc

