Novel atom interferometers for precision test of fundamental physics

Nicola Poli

Dipartimento Fisica e Astronomia Università degli Studi di Firenze LENS – INFN – CNR/INO

NFN

QSS, 01/07/2021

Introduction

Introduction

Precision measurements with ultra-cold atoms

Motivation

- Fundamental physics
 - Experimental test of Standard Model
 - Measurements of fundamental constants (G, α)
 - Definition of SI unit
- Applications
 - Inertial systems for navigation, geolocalization
 - Underground prospecting, ...

Optical atomic clocks

atomic oscillator

N. Poli et al. Rivista del Nuovo Cimento 12, 555 (2013)

Clock Uncertainty

N. Poli et al. Rivista del Nuovo Cimento 12, 555 (2013)

Optical fiber link

A. D. Ludlow, et. al. Science **319**, 1805 (2008) N. Poli, PRIN - MIUR (2009) D. Calonico et. al. Appl. Phys. B **117**, 979–986 (2014)

Direct fiber link from UNIFI to INRIM (Torino) - 642 km

10⁻¹⁹ frequency stability

Imaging optical frequencies

Imaging optical frequencies

Gravitational Red Shift

 $\frac{\delta f}{f_0} = \frac{g\Delta h}{c^2}$

10 μ m $\Delta v/v =$ 10 ⁻²¹

 $\frac{\Delta \nu / \nu}{\lambda_{dB}} \approx 10^{-22} \text{ anK}$

Quantum Interference of Clocks

Observe gravity induced "decoherence" in clock interferometers

Quantum superposition of clocks in different locations (h = height difference)

Dephasing introduced by differential time dilation in the two different paths γ_1 and γ_2 (T=time)

Interferometer contrast loss

 Decoherence induced by "which path" information from clock state

Quantum Interference of Clocks

Observe gravity induced "decoherence" in clock interferometers

Quantum superposition of clocks in different locations (h = height difference)

Dephasing introduced by differential time dilation in the two different paths γ_1 and γ_2 (T=time)

Interferometer contrast loss

Decoherence induced by "which path" information from clock state

Clock transition in Sr

Experimental setup

Experimental sequence (gradiometer)

Velocity selection on clock transition

Clock spectroscopy on free-falling atoms

Clock Gradiometer

Experimental sequence (gravimeter)

Gravimeter sensitivity

1.7×10⁻⁵ @ 150 s

L. Hu et al Class. Quantum Grav. 37 014001 (2020)

Gravimeter sensitivity

Quantum Interference of Clocks

Observe gravity induced "decoherence" in clock interferometers

Full revival for h=2 m, time T = 10 s

Ramsey-Bordé + Bloch oscillation

Contrast limited by trapping beam quality $(T_B \sim 1s @ dx=17 \mu m)$

X. Zhang, et al. Phys. Rev. A 94, 043608 (2016)

Contrast comparison

Clock interferometer candidates

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
138.905	140.116	140.905	144.243	144.913	150.36	151.964	157.25	158.925	162.500	164.930	167.259	168.934	173.055	174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protectinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
227.028	232.035	231.035	238.029	237.045	244.064	243.061	247.070	247.070	251.080	[254]	257.095	258.1	259.101	[262]

A novel atom interferometer

Simultaneous interferometers on optical clock transitions Cadmium & Strontium

Similar atomic level structure:

Magic wavelength ratio

Best optical clock

- Low sensitivity to blackbody shift (Cd!)
- «Clock interferometry» schemes
- Higher sensitivity to accelerations than alkalis
- Lower systematics
 - Very low sensitivity to **B** & **E** fields
 - Rejection of technical noise

J. N. Tinsley and N. Poli, "Exploring Gravity with Ultra-cold Cadmium and Strontium Optical Clocks and Bragg Interferometers," in ECAMP 13,(2019)

Quantum Interference of Clocks

Interferometer contrast modulation

(h*T)_{sr}= 21 m s (h*T)_{cd}= 10 m s

Full revival for h=2 m, time T = 5 - 10 s

TICTOC

GRAV

Sr as "contrast reference", observe on Cd faster contrast decay

Simultaneous Cd – Sr interferometer

 A "magic" coincidence for Cd-Sr: 	$\lambda_A \lambda_B r = \sqrt{k_B^{\text{eff}}/k_A^{\text{eff}}}$ A B (nm) (nm)
 Same interferometer scale 	Rb K 780.2 766.7 1.009 Yb Rb 398.9 780.2 1.011 Sr Cd 460.9 228.8 1.004 G G1 620.4 226.4 1.020
factor S _j =k ^{eff} T ²	Sr Cd 689.4 326.1 1.028
Relative phase shift δφ =	$= (S_1 - S_2)^* a$
(a = commo	n acceleration)
Bloch	

Efficient noise rejection and low systematics : same k_{eff} , Ω_{R} , au

Cd – Sr x2 better than Rb-K !

Test WEP

Weak form of Einstein Equivalence Principle Universality of the Free Fall

The trajectory of a freely falling "test" body is independent of its internal structure and composition

Test of EEP with not just different masses but also with **different quantum properties**.

Block

⁸⁸Sr

- Boson
- Zero total spin

⁸⁷Sr

- Fermion
- I=9/2

Spin-Gravity test with ⁸⁷Sr -⁸⁸Sr

M. G. Tarallo, et. al., Phys. Rev. Lett. **113**, 023005 (2014)

Simultaneous Cd – Sr interferometer

Test WEP Cd - Sr

- Low systematics
- High sensitivity to SME violation parameters

 $\eta_{\mathrm{A},\mathrm{B}} \cong D_1\left(\Delta Q_{\mathrm{A},\mathrm{B}}^{'1}\right) + D_2\left(\Delta Q_{\mathrm{A},\mathrm{B}}^{'2}\right) \qquad \eta_{\mathrm{A},\mathrm{B}} \cong \Delta f_{-n} + \Delta f_{+n} + \Delta \bar{f}_{-n} + \Delta \bar{f}_{+n}$

J. N. Tinsley and N. Poli, ECAMP 13 (2019) M.A.Hohensee et al., Phys. Rev. Lett. 111, 151102 (2013) T.Damour et al., Class. Quantum Grav. 29,184001 (2012)

		$Q_A^{\prime 1} - Q_B^{\prime 1}$	$Q_A^{\prime 2} - Q_B^{\prime 2}$	$f_{\beta_A^{e+p-n}} - f_{\beta_B^{e+p-n}}$	$f_{\beta_A^{e+p+n}} - f_{\beta_B^{e+p+n}}$	$f_{\beta_A^{\vec{e}+p-n}} - f_{\beta_B^{\vec{e}+p-n}}$	$f_{\beta_A^{\overline{e}+p+n}} - f_{\beta_B^{\overline{e}+p+n}}$
А	В	$ imes 10^4$	$ imes 10^4$	$\times 10^2$	$\times 10^4$	$\times 10^5$	$\times 10^4$
$^{85}\mathrm{Rb}$	$^{87}\mathrm{Rb}$	0.84	-0.79	-1.01	1.81	1.04	1.67
^{39}K	$^{87}\mathrm{Rb}$	-6.69	-23.69	-6.31	1.90	-62.30	0.64
84 Sr	88 Sr	1.77	-1.59	-2.09	2.71	-11.21	2.27
$^{87}\mathrm{Sr}$	$^{88}\mathrm{Sr}$	0.42	-0.39	-0.49	2.04	10.81	11.85
$^{87}\mathrm{Sr}$	$^{106}\mathrm{Cd}$	-6.54	-3.99	1.66	-2.99	42.20	-1.98
$^{87}\mathrm{Sr}$	^{114}Cd	-2.62	-6.95	-2.30	-2.11	20.71	-1.22
$^{88}\mathrm{Sr}$	$^{108}\mathrm{Cd}$	-6.12	-4.23	1.31	-2.95	36.28	-1.87
$^{106}\mathrm{Cd}$	$^{116}\mathrm{Cd}$	3.92	-2.96	-3.96	0.88	-21.49	0.76
$^{108}\mathrm{Cd}$	$^{116}\mathrm{Cd}$	3.07	-2.34	-3.12	-1.19	-26.38	-1.20

Cadmium

- Interesting possibility for atomic physics study with Cd atoms
- Cold collisional physics
 - Degenerate gas production
- Quantum information

¹⁰⁶Cd 1.25% ¹⁰⁸Cd 0.89% ¹¹⁰Cd 12.47% ¹¹¹Cd 12.80% ¹¹²Cd 24.11% $^{113}Cd^{(*)}$ 12.23% ¹¹⁴Cd 28.75% $^{116}Cd^{(*)}$ 7.51%

6 bosons (I=0) 2 fermions (I=1/2) (*) long lifetime

_					
\mathbf{Sr}					
	$\operatorname{transition}$	$\lambda~({\rm nm})$	$\Gamma/2\pi$	Is (mW/cm^2)	T_D
	${}^{1}S_{0}-{}^{1}P_{1}$	460.8	32 MHz	42.5	$0.7 \mathrm{mK}$
	${}^{1}S_{0}-{}^{3}P_{1}$	689.4	$7.5 \mathrm{~kHz}$	3×10^{-3}	$200~{\rm nK}$
	${}^{1}S_{0}-{}^{3}P_{0}$	698	1 mHz (Sr-87)	$\sim 10^{-9}$	-
Cd					
	$\operatorname{transition}$	$\lambda~({\rm nm})$	$\Gamma/2\pi$	Is (mW/cm^2)	
	${}^{1}S_{0}-{}^{1}P_{1}$	229	$91 \mathrm{MHz}$	988	2.2 mK
	${}^{1}S_{0}-{}^{3}P_{1}$	325	70 kHz	3×10^{-3}	$1.6 \ \mu K$
	$^{1}\mathrm{S}_{0}\text{-}^{3}\mathrm{P}_{0}$	335	$3~\mathrm{mHz}~\mathrm{(Cd-113)}$	3×10^{-3}	_

 Favorable wavelength ratio of main optical cooling & spectroscopy transitions

Cd lab !!

Cd laser sources

- Frequency quadrupoled laser sources
 - main cooling transition:

Cd laser sources

- Frequency quadrupoled laser sources
 - main cooling transitions:

- Tunable high power VECSEL (915- 928 nm)

200mW

x2(BBO)

229 nm

 Sr & Cd cooling transition wavelenghts addressed

J. N. Tinsley, et al. "Watt-level blue light for precision spectroscopy, laser cooling and trapping of strontium and cadmium atoms", arXiv:2104.11924 (2021)

Cd 229 nm main cooling laser

Cd atomic beam spectroscopy

Cd atomic beam spectroscopy

Transition	Determination 1 [38]	Determination 2 [38]	This work / MHz
¹⁰⁶ Cd	-	-	$1748.1 \pm 5.2 \pm 9.7$
108 Cd	-	-	$1258.5 \pm 5.3 \pm 7.0$
¹¹⁰ Cd	878 ± 17	905 ± 35	$826.2 \pm 4.2 \pm 4.6$
111 Cd - F'=1/2	-	-	$591.5 \pm 4,4 \pm 3.3$
111 Cd - F'=3/2	878 ± 17	-	$874.7 \pm 4.3 \pm 4.8$
¹¹² Cd	375 ± 15	395 ± 30	$391.6 \pm 4.0 \pm 2.2$
113 Cd - F'=1/2	-	-	$148.0 \pm 4.2 \pm 0.8$
113 Cd - F'=3/2	375 ± 15	-	$426.5 \pm 4.5 \pm 2.4$
¹¹⁶ Cd	-	-	$-298.7 \pm 4.0 \pm 1.7$

J. N. Tinsley, et al. "Watt-level blue light for precision spectroscopy, laser cooling and trapping of strontium and cadmium atoms", arXiv:2104.11924 (2021)

King's Plots

Isotope	Abundancy	Nuclear Spin	Mass (u.m.a.)
¹⁰⁶ Cd	1.25%	0	105.906
¹⁰⁸ Cd	0.89%	0	107.904
¹¹⁰ Cd	12.49%	0	109.903
¹¹¹ Cd	12.80%	1/2	110.904
¹¹² Cd	24.13%	0	111.903
¹¹³ Cd	13.47%	1/2	112.904
¹¹⁴ Cd	28.73%	0	113.903
¹¹⁶ Cd	7.49%	0	115.905

I.Counts "Evidence for Nonlinear Isotope Shift in Yb+ Search for New Boson", Phys Rev Lett 125, 123002 (2020)

Cd 326 nm laser source

- precision spectroscopy & laser cooling on 3P1 intercombination transition

Cd 332 nm clock source

A new Cd-Sr system

- 2m fountain for Cd & Sr

- Cd & Sr loaded from slowed atomic beams in separated MOT

- optical dipole traps to transfer the atoms at the center of the fountain tube

FPGA-SOC based control system for AMO physics experiments

A. Trenkwalder, M. Zaccanti, N. Poli, "A flexible control system for atomic, molecular and optical physics experiments", arXiv:2106.02889 (2021)

FPGA-SOC based control system for AMO physics experiments

A. Trenkwalder, M. Zaccanti, N. Poli, "A flexible control system for atomic, molecular and optical physics experiments", arXiv:2106.02889 (2021)

Sr – Cd interferometer

European Research Council Established by the European Commission

ERC-2017-CoG

Exploring Gravity with Ultra-cold Cadmium and Strontium Optical Clocks and Atom Interferometers

Sr and Cd atom interferometers for fundamental physics test

WEP test/spin gravity test

Quantum interference of "clocks" in different gravitational potential

Thanks for the attention!!!

http://coldatoms.lens.unifi.it/poli/