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Quantum Verification

• Computationally limited verifier

• Powerful quantum server(s)

• Certify the correctness of the computation



Verification as a Complexity Question

Verification as a Interactive Proof System

Verification as a Benchmarking tool
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CS 880: Quantum Information Processing 11/2/2010

Lecture 24: Zero Knowledge

Instructor: Dieter van Melkebeek Scribe: Tyson Williams

Last lecture, we discussed cryptographic protocols. In particular, we gave a quantum protocol
for secret key exchange that is secure in an information theoretical sense provided there is a secure
public classical channel. We also discussed bit commitment and showed that no quantum protocol
has information theoretic security. Today we will discuss zero knowledge systems and give an
example of a classical zero knowledge protocol that remains zero knowledge even in the quantum
setting.

1 Interactive Proof Systems

To introduce zero knowledge, we first need to introduce the notion of an interactive proof system.

Definition 1. An interactive proof system (IPS) for a language L is a protocol between a compu-
tationally unrestricted prover P and a probabilistic polynomial-time verifier V such that on input
x, which is available to both parties,

(8x 2 L) Pr [(V $ P )(x) accepts] = 1 (completeness)

(8x 62 L)(8P 0) Pr
⇥
(V $ P

0)(x) accepts
⇤
 1

2
(soundness)

where (V $ P )(x) means “the verifier’s view while running the protocol with P on input x.”

The view of the verifier contains his coin flips, communication received from the prover, and
communication sent to the prover (although this last type of communication can be recreated by the
verifier using the same random bits). The completeness does not have to be perfect (that is, equal
to 1) but we will only discuss such IPSs. If soundness of 1/2 is too high, just repeat the protocol
a polynomial number of times for exponentially small soundness. The soundness condition must
hold for all provers P

0, even ones that deviate from the protocol and try to convince the verifier
that x is in the language when it is not.

An IPS is a generalization of the proof system associated with the class NP. For NP, the prover
provides the witness as the proof and the verifier checks it deterministically in polynomial time.
The di↵erence here is that the verifier is allowed randomness and may interact with the prover
several times. Without the randomness, multiple interactions is not more powerful.

An example of an IPS is, of course, standard NP proofs. An interesting example is GraphNon-
Isomorphism. We do not know if this problem is in NP, but it has a very simple IPS. A yes instance
is a pair of graphs G0 and G1 that are not isomorphic. If the number of vertices in the graphs
di↵er, then the verifier does not need the help of the prover, so let both graphs have n vertices. The
verifier picks a bit b 2 {0, 1} and � 2 Sn (both uniformly at random), sends �(Gb) to the prover,
and asks the prover to state which b he used. If the prover responds correctly, then the verifier
accepts; otherwise, he rejects.

If the graphs are not isomorphic, then the prover is always be able to correctly identify b because
�(Gb) is only isomorphic with Gb and not with Gb. Thus, this IPS has perfect completeness. If the

1
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Towards Practical Verification

Gottesman (04) - Vazirani (07) - Aaronson $25 Challenge (07)

Does BQP admit a quantum interactive protocol 
where the honest prover is in BQP and the verifier is in BPP?



Towards Practical Verification

Gottesman (04) - Vazirani (07) - Aaronson $25 Challenge (07)

Does BQP admit a quantum interactive protocol 
where the honest prover is in BQP and the verifier is in BPP?

Yes, if verifier can prepare some random qubits

Yes, if provers are entangled but none-communicating

Yes, if malicious prover cannot break LWE 

Aharonov, Ben-Or, and Eban, ICS 2010 
Broadbent, Fitzsimons and Kashefi, FOCS 2009

Reichardt, Unger, Vazirani, Nature 2013  

Mahadev, FOCS 2018
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Quantum Interactive Proof System

• Correctness: in the absence of any interference/noise/deviation, 
verifier accepts and the computation output is correct


• Soundness: Verifier rejects an incorrect output, except with 
probability at most exponentially small in the security parameter




Single-prover prepare-and-send

     verifier has the ability to prepare quantum states and send them to the prover 

• State authentication-based protocols

• Trapification-based protocols

• Test or Compute 

Quantum Interactive Proof System     Gheorghiu, Kapourniotis, Kashefi 



Single-prover receive-and-measure 
verifier receives quantum states from the prover and has the ability to measure them 

• Post-hoc Verification (none hiding)

• Measuring only blind QC  

Quantum Interactive Proof System     Gheorghiu, Kapourniotis, Kashefi 



Quantum Interactive Proof System     Gheorghiu, Kapourniotis, Kashefi 

Multi-prover entanglement-based 
Classical Verifier interacts with more than one provers that are not allowed to 


communicate during the protocol


• CHSH game Rigidity

• Self-testing graph states

• Pauli Braiding



Classical Verifier Quantum Prover

+ 
Trusted  

random single qubit generator 

Classical & Quantum

Communication

Prepare and Send Verification
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Alice accepting an incorrect outcome density operator. Any outcome density operator either results
in st 6= rt or is contained within the subspace of correct and incorrect outcome states, which could
be then probabilistically projected into a correct or an incorrect state. Hence intuitively, a protocol
is defined to be verifiable if the corresponding outcome state is far from any incorrect outcome
states. Following the approach of [28], we first define the notion of correctness 9.

Definition 8. Let P ⌫

incorrect
be the projection onto the subspace of all the possible incorrect outcome

density operator for the fixed choice of Alice’s random variables denoted with ⌫, that is the following
projection

P ⌫

incorrect = (I� | ⌫

ideali h ⌫

ideal|) ⌦ |r⌫t i hr⌫t |

where | ⌫

ideal
i h ⌫

ideal
| = Tri 62{O[{t}}(B0(⌫)). Let p(⌫) be the probability of Alice choosing random

variables parameterized by ⌫, that is the probability of choosing a position i among all possible
vertices of the graph to be the trap position (denoted as a random variable t) and the probability
of choosing random variables �, r, x, ✓ (as defined in Definition 6). Given 0  ✏ < 1, we define a
protocol to be ✏-verifiable, if for any choice of Bob’s strategy (denoted by j) the probability of Alice
accepting an incorrect outcome density operator is bounded by ✏:

Tr(
X

⌫

p(⌫) P ⌫

incorrect Bj(⌫))  ✏.

Theorem 9. Protocol 6 is (1� 1
2m)-verifiable in general, and in the special case of purely classical

output the protocol is also (1� 1
m

)-verifiable, where m is the total number of qubits in the protocol.

Proof. At the beginning of the protocol, Alice prepares the input qubits in the following form:

|ei = Xx1Z(✓1) ⌦ . . . ⌦ XxlZ(✓l) |Ii

and positions them among the first n qubits. She then prepares the remaining qubits in the following
form (where D is the index of the dummy qubits)

8i 2 D |dii
8i 62 D

Q
j2NG(i)\D Zdj |+✓i

i =
���+✓i+

P
j2NG(i)\D

dj⇡

E

and sends all m qubits in the order of the labelling of the vertices of the graph, we represent the
whole m qubit state as |Mi. We can treat all the measurement angels �i as orthogonal quantum
states |�ii. Note that for Protocol 6 all the random variables t, x, r, ✓ are independent and uniform.
For a fixed choice of Alice’s random variables and Bob’s strategy denoted indexed by ⌫ and j
respectively, the outcome density operator Bj(⌫) can be written in the form of the output of a
circuit computation as depicted in Figure 3.

While in the actual protocol, at step i, Alice computes �i as a function of s<i which in turn is
calculated from b<i and r<i, we note that we can rewrite the circuit from Figure 3 in such a way
that the values �i are part of the initial state, without a↵ecting causality as they do not interact
with anything until after the corresponding bi has been generated. In other words, despite the fact
that the protocol seems to be interactive, since the interactions is only required to compensate for
the correction operators, one could instead consider a post-selected scenario to simplify the protocol

9
Recall that for simplicity we have assumed that the computation is deterministic and the input is in a pure state,

and hence the ideal output will necessarily be a pure state. This restriction to pure states mirrors the approach of

[28].
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FIG. 4: Schematic of a quantum computation with verification sub-routines.

Whereas the laws of physics have been tested in vari-
ous limits - small or large scales, high or low energies -
the boundary of high computational complexity is mostly
unexplored. So, it is even imaginable that quantum
mechanics might break down at some scale of complex-
ity [22].

On the experimental side, current quantum comput-
ers [23] are limited to the processing of a few qubits,
which does not allow yet to solve problems which are in-
tractable using classical computers. In the future when
large-scale quantum computers might be available [24–
27], the verification of quantum computations and quan-
tum simulations will be a crucial task [28].

Thus, our demonstration might have implications for
new quantum computing experiments as well as on the
foundations of quantum physics.

Add Caslav’s statement: In our implementation, we
assume the correctness of quantum mechanics for
the verification of quantum resources. Without this
assumption, a full demonstration would require the
two entangled photons to be sent far apart from each
other in two distant laboratories of the prover where
only in the very last instant of the computation the
verifier gives the measurement instructions to the
prover. By this means, no classical computers could
mimic the output of the computation.
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FIG. 4: Schematic of a quantum computation with verification sub-routines.

Whereas the laws of physics have been tested in vari-
ous limits - small or large scales, high or low energies -
the boundary of high computational complexity is mostly
unexplored. So, it is even imaginable that quantum
mechanics might break down at some scale of complex-
ity [22].

On the experimental side, current quantum comput-
ers [23] are limited to the processing of a few qubits,
which does not allow yet to solve problems which are in-
tractable using classical computers. In the future when
large-scale quantum computers might be available [24–
27], the verification of quantum computations and quan-
tum simulations will be a crucial task [28].

Thus, our demonstration might have implications for
new quantum computing experiments as well as on the
foundations of quantum physics.

Add Caslav’s statement: In our implementation, we
assume the correctness of quantum mechanics for
the verification of quantum resources. Without this
assumption, a full demonstration would require the
two entangled photons to be sent far apart from each
other in two distant laboratories of the prover where
only in the very last instant of the computation the
verifier gives the measurement instructions to the
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Whereas the laws of physics have been tested in vari-
ous limits - small or large scales, high or low energies -
the boundary of high computational complexity is mostly
unexplored. So, it is even imaginable that quantum
mechanics might break down at some scale of complex-
ity [22].

On the experimental side, current quantum comput-
ers [23] are limited to the processing of a few qubits,
which does not allow yet to solve problems which are in-
tractable using classical computers. In the future when
large-scale quantum computers might be available [24–
27], the verification of quantum computations and quan-
tum simulations will be a crucial task [28].

Thus, our demonstration might have implications for
new quantum computing experiments as well as on the
foundations of quantum physics.

Add Caslav’s statement: In our implementation, we
assume the correctness of quantum mechanics for
the verification of quantum resources. Without this
assumption, a full demonstration would require the
two entangled photons to be sent far apart from each
other in two distant laboratories of the prover where
only in the very last instant of the computation the
verifier gives the measurement instructions to the
prover. By this means, no classical computers could
mimic the output of the computation.
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Figure 1: (Color online) Hierarchical modular quantum computer ar-
chitecture hosting N = NELUNq qubits. (a) The elementary logic
units (ELU) consists of a register of Nq trapped atomic ion qubits,
whereby entangling quantum logic gates are mediated through the
local Coulomb interaction between qubits. (b) One or more atomic
qubits within each of the NELU registers are coupled to photonic
quantum channels, and through a reconfigurable optical crosscon-
nect switch (OXC, center), fiber beamsplitters and position sensitive
imager (right), qubits between different registers can be entangled.

scaling is likely limited by the complexity of the trap design,
diffraction of optical beams, and the hardware controllers to
operate the system.

Here we describe and analyze a modular universal scal-
able ion trap quantum computer (MUSIQC) architecture that
may enable construction of quantum processors with up to
106 qubits utilizing component technologies that have already
been demonstrated. This architecture features two elements:
stable trapped ion multi-qubit registers that can further be
connected with ion shuttling, and scalable photonic intercon-
nects that can link these registers in a flexible configuration
over large distances, as shown in Fig. 1. We articulate ar-
chitectural advantages of this approach that allows significant
speedup and resource reduction in quantum circuit execution
over other hardware architectures, enabled by the ability to op-
erate quantum gates between qubits throughout the entire pro-
cessor regardless of their relative location. Finally, we prove
how such a quantum network can support fault-tolerant error
correction even in the face of probabilistic interconnects, and
discuss the technological developments necessary for its real-
ization. While we focus our discussions on quantum registers
composed of trapped atomic ions, the networking aspect of
this architecture is applicable to other qubit platforms that fea-
ture strong optical transitions, such as quantum dots, neutral
atoms, or nitrogen-vacancy (NV) color centers in diamond [1].

II. QUANTUM COMPUTING IN A MODULAR
ARCHITECTURE

A. The Modular Elementary Logic Unit (ELU)

The base unit of MUSIQC is a collection of Nq qubit mem-
ories with local interactions, called the Elementary Logic Unit

Qubit ions 

“Refrigerator” ions Communication qubit 

(a) (b) 

Collection optics 

Single mode fiber 

Control laser fields Excitation laser field 

Figure 2: (Color online) Elementary Logic Unit (ELU) composed
of a single crystal of Nq trapped atomic ion qubits coupled through
their collective motion. (a) Classical laser fields impart qubit state-
dependent forces on one or more ions, affecting entangling quantum
gates between the memory qubits. Second ion species is introduced
as refrigeration ions. (b) One or more of the ions (rightmost in the
figure) are coupled to a photonic interface, where a classical laser
pulse maps the state of these communication qubits onto the states
of single photons (e.g., polarization or frequency), which then prop-
agate along an optical fiber to be interfaced with other ELUs.

(ELU). Quantum logic operations within the ELU are ideally
fast and deterministic, with error rates sufficiently small that
fault-tolerant error correction within an ELU is possible [21].
We represent the ELU with a crystal of Nq � 1 trapped
atomic ions as shown in Fig. 2a, with each qubit comprised of
internal energy levels of each ion, labeled as |"iand |#i, sepa-
rated by frequency !0. We assume the qubit levels are coupled
through an atomic dipole operator µ̂ = µ(|"i h#| + |#i h"|).
The ions interact through their external collective modes of
quantum harmonic motion. Such phonons can be used to
mediate entangling gates through application of qubit-state-
dependent optical or microwave dipole forces [22–24]. There
are many known protocols for phonon-based gates between
ions, and here we summarize the main points relevant to the
size of the ELU and the larger architecture.

An externally applied near-resonant running wave field
with amplitude E(x̂) = E0eikx̂ and wavenumber k cou-
ples to the atomic dipole through the interaction Hamiltonian
Ĥ = �µ̂E(x̂), and by suitably tuning the field near sidebands
induced by the harmonic motion of the ions [12] a qubit state
dependent force results. In this way, qubits can be mapped
onto phonon states [12, 22] and then onto other qubits for
entangling operations with characteristic speed Rgate = ⌘⌦,
where ⌘ =

p
~k2/(2m0Nq!) is the Lamb Dicke parameter,

m0 is the mass of each ion, ! the frequency of harmonic os-
cillation of the collective phonon mode, and ⌦ = µE0/2~ is
the Rabi frequency of the atomic dipole independent of mo-
tion. For optical Raman transitions between qubit states (e.g.,
atomic hyperfine ground states) [12], two fields are each de-
tuned by � from an excited state of linewidth � ⌧ �, and
when their difference frequency is near resonant with the qubit
frequency splitting !0, we use instead ⌦ = (µE0)2/(2~2�).

The typical gate speed within an ELU therefore slows down

Broadbent, Fitzsimons and Kashefi, FOCS09

Cryptography Toolkit

|+⌦ = 1⇥
2
(|0⌦+ |1⌦)

|⇧⌦

|±⌦

X

Z

H

J(� + ⇥ + r⇤)

⌅r

|+⇥⌦

|±�+⇥+r⇤⌦

{|+⇥⌦}
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Figure 1: (Color online) Hierarchical modular quantum computer ar-
chitecture hosting N = NELUNq qubits. (a) The elementary logic
units (ELU) consists of a register of Nq trapped atomic ion qubits,
whereby entangling quantum logic gates are mediated through the
local Coulomb interaction between qubits. (b) One or more atomic
qubits within each of the NELU registers are coupled to photonic
quantum channels, and through a reconfigurable optical crosscon-
nect switch (OXC, center), fiber beamsplitters and position sensitive
imager (right), qubits between different registers can be entangled.

scaling is likely limited by the complexity of the trap design,
diffraction of optical beams, and the hardware controllers to
operate the system.

Here we describe and analyze a modular universal scal-
able ion trap quantum computer (MUSIQC) architecture that
may enable construction of quantum processors with up to
106 qubits utilizing component technologies that have already
been demonstrated. This architecture features two elements:
stable trapped ion multi-qubit registers that can further be
connected with ion shuttling, and scalable photonic intercon-
nects that can link these registers in a flexible configuration
over large distances, as shown in Fig. 1. We articulate ar-
chitectural advantages of this approach that allows significant
speedup and resource reduction in quantum circuit execution
over other hardware architectures, enabled by the ability to op-
erate quantum gates between qubits throughout the entire pro-
cessor regardless of their relative location. Finally, we prove
how such a quantum network can support fault-tolerant error
correction even in the face of probabilistic interconnects, and
discuss the technological developments necessary for its real-
ization. While we focus our discussions on quantum registers
composed of trapped atomic ions, the networking aspect of
this architecture is applicable to other qubit platforms that fea-
ture strong optical transitions, such as quantum dots, neutral
atoms, or nitrogen-vacancy (NV) color centers in diamond [1].

II. QUANTUM COMPUTING IN A MODULAR
ARCHITECTURE

A. The Modular Elementary Logic Unit (ELU)

The base unit of MUSIQC is a collection of Nq qubit mem-
ories with local interactions, called the Elementary Logic Unit
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Figure 2: (Color online) Elementary Logic Unit (ELU) composed
of a single crystal of Nq trapped atomic ion qubits coupled through
their collective motion. (a) Classical laser fields impart qubit state-
dependent forces on one or more ions, affecting entangling quantum
gates between the memory qubits. Second ion species is introduced
as refrigeration ions. (b) One or more of the ions (rightmost in the
figure) are coupled to a photonic interface, where a classical laser
pulse maps the state of these communication qubits onto the states
of single photons (e.g., polarization or frequency), which then prop-
agate along an optical fiber to be interfaced with other ELUs.

(ELU). Quantum logic operations within the ELU are ideally
fast and deterministic, with error rates sufficiently small that
fault-tolerant error correction within an ELU is possible [21].
We represent the ELU with a crystal of Nq � 1 trapped
atomic ions as shown in Fig. 2a, with each qubit comprised of
internal energy levels of each ion, labeled as |"iand |#i, sepa-
rated by frequency !0. We assume the qubit levels are coupled
through an atomic dipole operator µ̂ = µ(|"i h#| + |#i h"|).
The ions interact through their external collective modes of
quantum harmonic motion. Such phonons can be used to
mediate entangling gates through application of qubit-state-
dependent optical or microwave dipole forces [22–24]. There
are many known protocols for phonon-based gates between
ions, and here we summarize the main points relevant to the
size of the ELU and the larger architecture.

An externally applied near-resonant running wave field
with amplitude E(x̂) = E0eikx̂ and wavenumber k cou-
ples to the atomic dipole through the interaction Hamiltonian
Ĥ = �µ̂E(x̂), and by suitably tuning the field near sidebands
induced by the harmonic motion of the ions [12] a qubit state
dependent force results. In this way, qubits can be mapped
onto phonon states [12, 22] and then onto other qubits for
entangling operations with characteristic speed Rgate = ⌘⌦,
where ⌘ =

p
~k2/(2m0Nq!) is the Lamb Dicke parameter,

m0 is the mass of each ion, ! the frequency of harmonic os-
cillation of the collective phonon mode, and ⌦ = µE0/2~ is
the Rabi frequency of the atomic dipole independent of mo-
tion. For optical Raman transitions between qubit states (e.g.,
atomic hyperfine ground states) [12], two fields are each de-
tuned by � from an excited state of linewidth � ⌧ �, and
when their difference frequency is near resonant with the qubit
frequency splitting !0, we use instead ⌦ = (µE0)2/(2~2�).

The typical gate speed within an ELU therefore slows down
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Figure 1: (Color online) Hierarchical modular quantum computer ar-
chitecture hosting N = NELUNq qubits. (a) The elementary logic
units (ELU) consists of a register of Nq trapped atomic ion qubits,
whereby entangling quantum logic gates are mediated through the
local Coulomb interaction between qubits. (b) One or more atomic
qubits within each of the NELU registers are coupled to photonic
quantum channels, and through a reconfigurable optical crosscon-
nect switch (OXC, center), fiber beamsplitters and position sensitive
imager (right), qubits between different registers can be entangled.

scaling is likely limited by the complexity of the trap design,
diffraction of optical beams, and the hardware controllers to
operate the system.

Here we describe and analyze a modular universal scal-
able ion trap quantum computer (MUSIQC) architecture that
may enable construction of quantum processors with up to
106 qubits utilizing component technologies that have already
been demonstrated. This architecture features two elements:
stable trapped ion multi-qubit registers that can further be
connected with ion shuttling, and scalable photonic intercon-
nects that can link these registers in a flexible configuration
over large distances, as shown in Fig. 1. We articulate ar-
chitectural advantages of this approach that allows significant
speedup and resource reduction in quantum circuit execution
over other hardware architectures, enabled by the ability to op-
erate quantum gates between qubits throughout the entire pro-
cessor regardless of their relative location. Finally, we prove
how such a quantum network can support fault-tolerant error
correction even in the face of probabilistic interconnects, and
discuss the technological developments necessary for its real-
ization. While we focus our discussions on quantum registers
composed of trapped atomic ions, the networking aspect of
this architecture is applicable to other qubit platforms that fea-
ture strong optical transitions, such as quantum dots, neutral
atoms, or nitrogen-vacancy (NV) color centers in diamond [1].

II. QUANTUM COMPUTING IN A MODULAR
ARCHITECTURE

A. The Modular Elementary Logic Unit (ELU)

The base unit of MUSIQC is a collection of Nq qubit mem-
ories with local interactions, called the Elementary Logic Unit
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Figure 2: (Color online) Elementary Logic Unit (ELU) composed
of a single crystal of Nq trapped atomic ion qubits coupled through
their collective motion. (a) Classical laser fields impart qubit state-
dependent forces on one or more ions, affecting entangling quantum
gates between the memory qubits. Second ion species is introduced
as refrigeration ions. (b) One or more of the ions (rightmost in the
figure) are coupled to a photonic interface, where a classical laser
pulse maps the state of these communication qubits onto the states
of single photons (e.g., polarization or frequency), which then prop-
agate along an optical fiber to be interfaced with other ELUs.

(ELU). Quantum logic operations within the ELU are ideally
fast and deterministic, with error rates sufficiently small that
fault-tolerant error correction within an ELU is possible [21].
We represent the ELU with a crystal of Nq � 1 trapped
atomic ions as shown in Fig. 2a, with each qubit comprised of
internal energy levels of each ion, labeled as |"iand |#i, sepa-
rated by frequency !0. We assume the qubit levels are coupled
through an atomic dipole operator µ̂ = µ(|"i h#| + |#i h"|).
The ions interact through their external collective modes of
quantum harmonic motion. Such phonons can be used to
mediate entangling gates through application of qubit-state-
dependent optical or microwave dipole forces [22–24]. There
are many known protocols for phonon-based gates between
ions, and here we summarize the main points relevant to the
size of the ELU and the larger architecture.

An externally applied near-resonant running wave field
with amplitude E(x̂) = E0eikx̂ and wavenumber k cou-
ples to the atomic dipole through the interaction Hamiltonian
Ĥ = �µ̂E(x̂), and by suitably tuning the field near sidebands
induced by the harmonic motion of the ions [12] a qubit state
dependent force results. In this way, qubits can be mapped
onto phonon states [12, 22] and then onto other qubits for
entangling operations with characteristic speed Rgate = ⌘⌦,
where ⌘ =

p
~k2/(2m0Nq!) is the Lamb Dicke parameter,

m0 is the mass of each ion, ! the frequency of harmonic os-
cillation of the collective phonon mode, and ⌦ = µE0/2~ is
the Rabi frequency of the atomic dipole independent of mo-
tion. For optical Raman transitions between qubit states (e.g.,
atomic hyperfine ground states) [12], two fields are each de-
tuned by � from an excited state of linewidth � ⌧ �, and
when their difference frequency is near resonant with the qubit
frequency splitting !0, we use instead ⌦ = (µE0)2/(2~2�).

The typical gate speed within an ELU therefore slows down
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Figure 1: (Color online) Hierarchical modular quantum computer ar-
chitecture hosting N = NELUNq qubits. (a) The elementary logic
units (ELU) consists of a register of Nq trapped atomic ion qubits,
whereby entangling quantum logic gates are mediated through the
local Coulomb interaction between qubits. (b) One or more atomic
qubits within each of the NELU registers are coupled to photonic
quantum channels, and through a reconfigurable optical crosscon-
nect switch (OXC, center), fiber beamsplitters and position sensitive
imager (right), qubits between different registers can be entangled.

scaling is likely limited by the complexity of the trap design,
diffraction of optical beams, and the hardware controllers to
operate the system.

Here we describe and analyze a modular universal scal-
able ion trap quantum computer (MUSIQC) architecture that
may enable construction of quantum processors with up to
106 qubits utilizing component technologies that have already
been demonstrated. This architecture features two elements:
stable trapped ion multi-qubit registers that can further be
connected with ion shuttling, and scalable photonic intercon-
nects that can link these registers in a flexible configuration
over large distances, as shown in Fig. 1. We articulate ar-
chitectural advantages of this approach that allows significant
speedup and resource reduction in quantum circuit execution
over other hardware architectures, enabled by the ability to op-
erate quantum gates between qubits throughout the entire pro-
cessor regardless of their relative location. Finally, we prove
how such a quantum network can support fault-tolerant error
correction even in the face of probabilistic interconnects, and
discuss the technological developments necessary for its real-
ization. While we focus our discussions on quantum registers
composed of trapped atomic ions, the networking aspect of
this architecture is applicable to other qubit platforms that fea-
ture strong optical transitions, such as quantum dots, neutral
atoms, or nitrogen-vacancy (NV) color centers in diamond [1].

II. QUANTUM COMPUTING IN A MODULAR
ARCHITECTURE

A. The Modular Elementary Logic Unit (ELU)

The base unit of MUSIQC is a collection of Nq qubit mem-
ories with local interactions, called the Elementary Logic Unit

Qubit ions 

“Refrigerator” ions Communication qubit 

(a) (b) 

Collection optics 

Single mode fiber 

Control laser fields Excitation laser field 

Figure 2: (Color online) Elementary Logic Unit (ELU) composed
of a single crystal of Nq trapped atomic ion qubits coupled through
their collective motion. (a) Classical laser fields impart qubit state-
dependent forces on one or more ions, affecting entangling quantum
gates between the memory qubits. Second ion species is introduced
as refrigeration ions. (b) One or more of the ions (rightmost in the
figure) are coupled to a photonic interface, where a classical laser
pulse maps the state of these communication qubits onto the states
of single photons (e.g., polarization or frequency), which then prop-
agate along an optical fiber to be interfaced with other ELUs.

(ELU). Quantum logic operations within the ELU are ideally
fast and deterministic, with error rates sufficiently small that
fault-tolerant error correction within an ELU is possible [21].
We represent the ELU with a crystal of Nq � 1 trapped
atomic ions as shown in Fig. 2a, with each qubit comprised of
internal energy levels of each ion, labeled as |"iand |#i, sepa-
rated by frequency !0. We assume the qubit levels are coupled
through an atomic dipole operator µ̂ = µ(|"i h#| + |#i h"|).
The ions interact through their external collective modes of
quantum harmonic motion. Such phonons can be used to
mediate entangling gates through application of qubit-state-
dependent optical or microwave dipole forces [22–24]. There
are many known protocols for phonon-based gates between
ions, and here we summarize the main points relevant to the
size of the ELU and the larger architecture.

An externally applied near-resonant running wave field
with amplitude E(x̂) = E0eikx̂ and wavenumber k cou-
ples to the atomic dipole through the interaction Hamiltonian
Ĥ = �µ̂E(x̂), and by suitably tuning the field near sidebands
induced by the harmonic motion of the ions [12] a qubit state
dependent force results. In this way, qubits can be mapped
onto phonon states [12, 22] and then onto other qubits for
entangling operations with characteristic speed Rgate = ⌘⌦,
where ⌘ =

p
~k2/(2m0Nq!) is the Lamb Dicke parameter,

m0 is the mass of each ion, ! the frequency of harmonic os-
cillation of the collective phonon mode, and ⌦ = µE0/2~ is
the Rabi frequency of the atomic dipole independent of mo-
tion. For optical Raman transitions between qubit states (e.g.,
atomic hyperfine ground states) [12], two fields are each de-
tuned by � from an excited state of linewidth � ⌧ �, and
when their difference frequency is near resonant with the qubit
frequency splitting !0, we use instead ⌦ = (µE0)2/(2~2�).

The typical gate speed within an ELU therefore slows down
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X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌥R {0, 1}

⇥x,y ⌥R {0, · · · , 7⇤/4}

sx,y := sx,y + rx,y

|0⌦, |1⌦

BPP ⇧ QNC
NC2 ⇧ QNC1

|+⇥⌦, |�⇥⌦

M ⇥|+⇥⌦ ⌃ s = 0

M ⇥|�⇥⌦ ⌃ s = 1

3

|+⌦ = 1⇥
2
(|0⌦+ |1⌦)

|⇧⌦

|±⌦

X

Z

H

J(� + ⇥ + r⇤)

⌅r

|+⇥⌦

|±�+⇥+r⇤⌦

{|+⇥⌦}
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Unconditionally Verifiable Blind Computation A:21

Theorem 6.4. Protocol 6 is (1 �
1

2m )-verifiable in general, and in the special case of

purely classical output the protocol is also (1 �
1
m

)-verifiable, where m is the total number

of qubits in the protocol.

Proof. At the beginning of the protocol, Alice chooses the independent and uniform
random variables for ⌫. Next Alice prepares the input qubits in the following form:

|e⌫i = Xx1Z(✓1) ⌦ . . . ⌦ XxlZ(✓l) |Ii

and positions them among the first n qubits. Recall that n > |I| and hence the trap qubit
might be among this set of qubits. She then prepares the remaining qubits in the following
form (where D is the index of the dummy qubits)

8i 2 D |dii

8i 62 D
Q

j2NG(i)\D
Zdj |+✓i

i =
���+✓i+

P
j2NG(i)\D

dj⇡

E

and sends all m qubits in the order of the labeling of the vertices of the graph, we represent
the whole m qubit state as |M⌫

i. We can treat all the measurement angles �i as orthogonal
quantum states |�ii. For a fixed choice of Alice’s random variables (⌫) and Bob’s strategy
(j), Bob’s output from the computation can be written in the form of the output of a circuit
computation as depicted in Figure 3. Note this is the state of the system before the relevant
corrections for Alice’s secret key have been applied to yield the outcome density operator
Bj(⌫).

|0i⌦B

EG
U1

Uk

Um-n

Z(�k) H bm-n

}QuantumOutput

| i

|�1i

|�ki

|�m�ni

b1Z(�1) H

Z(�k) H bk

M⌫ {
Fig. 3. A run of protocol together with Bob’s deviation represented as Ui operators. The entangling op-
erator, EG, is the collection of all the required ctrl-Z operators corresponding to the graph edges. Note
that in Definition 6.1 we also considered an operator U0 representing Bob’s initial deviation. In the figure,
for simplicity, we have commuted U0 and combined it with U1. Trivially, if all the Ui operators are set to
be identity the above circuit converges to the exact run of the protocol, where a measurement in the basis��±�i

↵
is implemented using the controlled Z-rotation followed by a Hadamard gate and finally a Pauli Z

basis (computation basis) measurement on the corresponding qubits.

While in the actual protocol, at step i, Alice computes �i as a function of s<i which in
turn is calculated from b<i and r<i, we can rewrite the circuit from Figure 3 in such a way
that the values �i are part of the initial state, without a↵ecting causality as they do not
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interact with anything until after the corresponding bi has been generated. This will allow us
to reorder all the operators Ui to the end to obtain the new circuit shown in Figure 4. Note
that Figure 4 is not an actual run of the protocol, it is a mathematical equivalent of Figure
3 where the values of bi have been fixed to permit us to commute the operators as depicted.
However in the following proof we have considered any general deviation performed by Bob,
that is to say we consider any arbitrary Ui operators.

|0i⌦B

EG
U’1

U’k

U’m-n

Z(�m-n) H bm-n

}QuantumOutput

|�1i

|�ki

|�m�ni

b1Z(�1) H

Z(�k) H bk{| iM⌫

Fig. 4. The fact that any Uj in Figure 3 is independent of all �i<j , allows us to reposition the deviation

to the end of the circuit as shown above. Hence we can rewrite Bob’s deviation as U
0
i = PiUiP†

i , where
Pi =

N
i+1jm�n HjZj(�j).

In the rest of this proof we will use t to represent both the random variable and also
the position of the trap qubit. We denote by ⌦ = U 0

m�n
U 0
m�n�1...U

0
1 the overall action

of Bob’s deviation and by P =
�N

1im�n
HiZi(�i)

�
EG the action of the exact protocol

prior to measurement. Here, and in Figure 4, we have taken U 0
i

= PiUiP
†
i
, where Pi =N

i+1jm�n
HjZj(�j). Further we denote by

�� ⌫,b
↵

=
N

1im
|M⌫

i
N

1jm�n

���b
j

↵

the joint state of the initial (input, dummy and prepared) qubits sent by Alice to Bob
and the classical angles �b

i
, where b represents a possible branch of the computation as

parameterized by the measurement results {bi} sent by Bob to Alice. Finally, in line with
Definition 6.3, we define C⌫C ,b to be the Pauli operator which maps the final quantum
output state to the correct one depending on the random variable ⌫C and computation
branch b. Hence we have

Bj(⌫) = TrB
⇣P

b
|b + cri hb|C⌫C ,b⌦P((⌦B

|0i h0|) ⌦
�� ⌫,b

↵ ⌦
 ⌫,b

��)P†⌦†C†
⌫C ,b

|bi hb + cr|
⌘

.

where (cr)i = ri for all i 6= t and (cr)t = 0, and the subscript B denotes that the partial
trace is taken over Bob’s private register. Here cr is used to compactly deal with the fact
that in the protocol all measured qubits are decrypted by XORing them with r, except for
the trap qubit which remains uncorrected. Note that in the above the operator hb| · · · |bi
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Theorem 6.4. Protocol 6 is (1 �
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and positions them among the first n qubits. Recall that n > |I| and hence the trap qubit
might be among this set of qubits. She then prepares the remaining qubits in the following
form (where D is the index of the dummy qubits)

8i 2 D |dii

8i 62 D
Q

j2NG(i)\D
Zdj |+✓i

i =
���+✓i+

P
j2NG(i)\D

dj⇡

E

and sends all m qubits in the order of the labeling of the vertices of the graph, we represent
the whole m qubit state as |M⌫

i. We can treat all the measurement angles �i as orthogonal
quantum states |�ii. For a fixed choice of Alice’s random variables (⌫) and Bob’s strategy
(j), Bob’s output from the computation can be written in the form of the output of a circuit
computation as depicted in Figure 3. Note this is the state of the system before the relevant
corrections for Alice’s secret key have been applied to yield the outcome density operator
Bj(⌫).
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}QuantumOutput
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Fig. 3. A run of protocol together with Bob’s deviation represented as Ui operators. The entangling op-
erator, EG, is the collection of all the required ctrl-Z operators corresponding to the graph edges. Note
that in Definition 6.1 we also considered an operator U0 representing Bob’s initial deviation. In the figure,
for simplicity, we have commuted U0 and combined it with U1. Trivially, if all the Ui operators are set to
be identity the above circuit converges to the exact run of the protocol, where a measurement in the basis��±�i

↵
is implemented using the controlled Z-rotation followed by a Hadamard gate and finally a Pauli Z

basis (computation basis) measurement on the corresponding qubits.

While in the actual protocol, at step i, Alice computes �i as a function of s<i which in
turn is calculated from b<i and r<i, we can rewrite the circuit from Figure 3 in such a way
that the values �i are part of the initial state, without a↵ecting causality as they do not
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interact with anything until after the corresponding bi has been generated. This will allow us
to reorder all the operators Ui to the end to obtain the new circuit shown in Figure 4. Note
that Figure 4 is not an actual run of the protocol, it is a mathematical equivalent of Figure
3 where the values of bi have been fixed to permit us to commute the operators as depicted.
However in the following proof we have considered any general deviation performed by Bob,
that is to say we consider any arbitrary Ui operators.
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Fig. 4. The fact that any Uj in Figure 3 is independent of all �i<j , allows us to reposition the deviation

to the end of the circuit as shown above. Hence we can rewrite Bob’s deviation as U
0
i = PiUiP†

i , where
Pi =

N
i+1jm�n HjZj(�j).

In the rest of this proof we will use t to represent both the random variable and also
the position of the trap qubit. We denote by ⌦ = U 0

m�n
U 0
m�n�1...U

0
1 the overall action

of Bob’s deviation and by P =
�N

1im�n
HiZi(�i)

�
EG the action of the exact protocol

prior to measurement. Here, and in Figure 4, we have taken U 0
i

= PiUiP
†
i
, where Pi =N

i+1jm�n
HjZj(�j). Further we denote by

�� ⌫,b
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=
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|M⌫

i
N

1jm�n

���b
j

↵

the joint state of the initial (input, dummy and prepared) qubits sent by Alice to Bob
and the classical angles �b

i
, where b represents a possible branch of the computation as

parameterized by the measurement results {bi} sent by Bob to Alice. Finally, in line with
Definition 6.3, we define C⌫C ,b to be the Pauli operator which maps the final quantum
output state to the correct one depending on the random variable ⌫C and computation
branch b. Hence we have

Bj(⌫) = TrB
⇣P

b
|b + cri hb|C⌫C ,b⌦P((⌦B

|0i h0|) ⌦
�� ⌫,b

↵ ⌦
 ⌫,b

��)P†⌦†C†
⌫C ,b

|bi hb + cr|
⌘

.

where (cr)i = ri for all i 6= t and (cr)t = 0, and the subscript B denotes that the partial
trace is taken over Bob’s private register. Here cr is used to compactly deal with the fact
that in the protocol all measured qubits are decrypted by XORing them with r, except for
the trap qubit which remains uncorrected. Note that in the above the operator hb| · · · |bi
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purely classical output the protocol is also (1 �
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)-verifiable, where m is the total number

of qubits in the protocol.
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random variables for ⌫. Next Alice prepares the input qubits in the following form:

|e⌫i = Xx1Z(✓1) ⌦ . . . ⌦ XxlZ(✓l) |Ii

and positions them among the first n qubits. Recall that n > |I| and hence the trap qubit
might be among this set of qubits. She then prepares the remaining qubits in the following
form (where D is the index of the dummy qubits)
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and sends all m qubits in the order of the labeling of the vertices of the graph, we represent
the whole m qubit state as |M⌫

i. We can treat all the measurement angles �i as orthogonal
quantum states |�ii. For a fixed choice of Alice’s random variables (⌫) and Bob’s strategy
(j), Bob’s output from the computation can be written in the form of the output of a circuit
computation as depicted in Figure 3. Note this is the state of the system before the relevant
corrections for Alice’s secret key have been applied to yield the outcome density operator
Bj(⌫).
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Fig. 3. A run of protocol together with Bob’s deviation represented as Ui operators. The entangling op-
erator, EG, is the collection of all the required ctrl-Z operators corresponding to the graph edges. Note
that in Definition 6.1 we also considered an operator U0 representing Bob’s initial deviation. In the figure,
for simplicity, we have commuted U0 and combined it with U1. Trivially, if all the Ui operators are set to
be identity the above circuit converges to the exact run of the protocol, where a measurement in the basis��±�i

↵
is implemented using the controlled Z-rotation followed by a Hadamard gate and finally a Pauli Z

basis (computation basis) measurement on the corresponding qubits.

While in the actual protocol, at step i, Alice computes �i as a function of s<i which in
turn is calculated from b<i and r<i, we can rewrite the circuit from Figure 3 in such a way
that the values �i are part of the initial state, without a↵ecting causality as they do not
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interact with anything until after the corresponding bi has been generated. This will allow us
to reorder all the operators Ui to the end to obtain the new circuit shown in Figure 4. Note
that Figure 4 is not an actual run of the protocol, it is a mathematical equivalent of Figure
3 where the values of bi have been fixed to permit us to commute the operators as depicted.
However in the following proof we have considered any general deviation performed by Bob,
that is to say we consider any arbitrary Ui operators.
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Fig. 4. The fact that any Uj in Figure 3 is independent of all �i<j , allows us to reposition the deviation

to the end of the circuit as shown above. Hence we can rewrite Bob’s deviation as U
0
i = PiUiP†

i , where
Pi =

N
i+1jm�n HjZj(�j).

In the rest of this proof we will use t to represent both the random variable and also
the position of the trap qubit. We denote by ⌦ = U 0
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the joint state of the initial (input, dummy and prepared) qubits sent by Alice to Bob
and the classical angles �b

i
, where b represents a possible branch of the computation as

parameterized by the measurement results {bi} sent by Bob to Alice. Finally, in line with
Definition 6.3, we define C⌫C ,b to be the Pauli operator which maps the final quantum
output state to the correct one depending on the random variable ⌫C and computation
branch b. Hence we have

Bj(⌫) = TrB
⇣P

b
|b + cri hb|C⌫C ,b⌦P((⌦B

|0i h0|) ⌦
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.

where (cr)i = ri for all i 6= t and (cr)t = 0, and the subscript B denotes that the partial
trace is taken over Bob’s private register. Here cr is used to compactly deal with the fact
that in the protocol all measured qubits are decrypted by XORing them with r, except for
the trap qubit which remains uncorrected. Note that in the above the operator hb| · · · |bi
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Figure 4: The fact that any Uj in Figure 3 is independent of all �i<j , allows us to commute Uj to
the end of the circuit as shown above.

subscript on the ket to identify the relevant qubit. Thus we have

Tr(P ⌫

incorrect Bj(⌫)) = Tr(P? ⌦ |⌘⌫t i h⌘⌫t | (⌦P((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†⌦†)) .

Since any unitary operator can be written as linear combination of Pauli operators we have ⌦ =P
i
↵i�i, where

P
i
↵i↵⇤

i
= 1 and �i is a Pauli operator acting on the joint quantum state of Bob’s

private qubits and | ⌫i. Therefore the above equation can be written as

Tr(P ⌫

incorrect Bj(⌫)) = Tr

0

@P? ⌦ |⌘⌫t i h⌘⌫t |

0

@
X

i,j

↵i↵
⇤
j �iP((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†�j

1

A

1

A

= Tr

0

@
X

i,j

↵i↵
⇤
j P? ⌦ |⌘⌫t i h⌘⌫t | (�iP((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†�j)

1

A .

In order to determine which �i terms have a non-zero contribution in the above sum after the
projection operator is taken into account, it will be necessary to look at the structure of each
such Pauli operator. To this end, we will denote by �i|x the action of �i on qubit x, and hence
�i|x 2 {I, X, Y, Z}. For simplicity we assume each �i is encoded across 3 qubits (since there are
only 8 possible angles). Thus, we have 1  x  (m + B + 3(m � n)), where 1  x  m identifies
qubits received from Alice, m + 1  x  m + B identifies qubits in Bob’s private register, and the
remaining x values identify the qubits containing �i. Without loss of generality, as Bob’s private
register is assumed to start in the state |0i⌦B we need only consider a decomposition in terms of �i

in which �i|x 2 {I, X} for all m + 1  x  m + B, since Z |0i = I |0i and Y |0i = iX |0i. Similarly,
without loss of generality we can take �i|x 2 {I, X} for all m + B < x, since each qubit in the
register containing the angles {�i} is a classical state (i.e. a computational basis state), and hence
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up to a global phase the action of Z is identical to that of I and the action of Y is identical to that
of X.

The probability of Alice accepting an incorrect outcome density operator is given by pincorrect =
Tr(
P

⌫
p(⌫) P ⌫

incorrect
Bj(⌫)). This can be calculated via the expression for Tr(P ⌫

incorrect
Bj(⌫))

obtained earlier

pincorrect =
X

⌫

p(⌫)Tr(P ⌫

incorrect Bj(⌫))

= Tr

0

@
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⌫

p(⌫)
X

i,j

↵i↵
⇤
jP? ⌦ |⌘⌫t i h⌘⌫t |�iP((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†�j

1

A

=
X

i,j

Tr

 
X

⌫

p(⌫)↵i↵
⇤
j P? ⌦ |⌘⌫t i h⌘⌫t |�iP((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†�j

!
.

In order to obtain an upper bound for the above expression we make use of sets of indices x
of qubits such that the action of �i at that position, �i|x, is a particular Pauli operator, which we
denote as follows:

Ai = {x s.t. �i|x = I and 1  x  m}
Bi = {x s.t. �i|x = X and 1  x  m}
Ci = {x s.t. �i|x = Y and 1  x  m}
Di = {x s.t. �i|x = Z and 1  x  m}.

Note that in the above we restrict attention to the set of qubits originally sent from Alice to Bob
(which is why 1  x  m), and disregard the action on Bob’s private qubits. Additionally, we will
make use of a superscript O to denote subsets of the above sets subject to the constraint that x is an
output qubit (m�n < x). Thus, for example, DO

i
= {x s.t. �i|x = Z and m�n+1  x  m}. We

note that only �i and �j operators for which Tr(P?�iP((⌦B |0i h0|) ⌦ | i h |)P�j) 6= 0 contribute
to pincorrect, and with the above definitions in place, we can express this succinctly as the condition
that |Bi|+ |Ci|+ |DO

i
| � 1 (denoted as i 2 Ei) and |Bj |+ |Cj |+ |DO

j
| � 1 (denoted as j 2 Ej). That

is to say, one or both of the following has happened: �i (�j) has produced an incorrect outcome for
one or more of the measurement results and hence |Bi/BO

i
|+ |Ci/CO

i
| � 1 (|Bj/BO

j
|+ |Cj/CO

j
| � 1)

or �i (�j) acts non-trivially on the quantum output and hence |BO

i
| + |CO

i
| + |DO

i
| � 1 (|BO

i
| +

|CO

j
| + |DO

j
| � 1). Thus after expanding the random variable ⌫ we have

pincorrect 

X

i2Ei,j2Ej

Tr

0

@
X

t,✓,r,x

p(✓)p(t)p(r)p(x)↵i↵
⇤
j P? ⌦ |⌘⌫t i h⌘⌫t |�iP((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†�j

1

A .

We note that averaging over r, x and ✓ for all qubits other than the trap qubit yields the
maximally mixed state of the system sent from Alice to Bob (both the initial qubits and the
angles �i) as per the proof of blindness, and so the reduced density matrix for that subsystem is
proportional to the identity. Therefore after the action of the protocol (P) we obtain the following:
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Figure 4: The fact that any Uj in Figure 3 is independent of all �i<j , allows us to commute Uj to
the end of the circuit as shown above.

subscript on the ket to identify the relevant qubit. Thus we have

Tr(P ⌫

incorrect Bj(⌫)) = Tr(P? ⌦ |⌘⌫t i h⌘⌫t | (⌦P((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†⌦†)) .

Since any unitary operator can be written as linear combination of Pauli operators we have ⌦ =P
i
↵i�i, where

P
i
↵i↵⇤
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= 1 and �i is a Pauli operator acting on the joint quantum state of Bob’s

private qubits and | ⌫i. Therefore the above equation can be written as
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In order to determine which �i terms have a non-zero contribution in the above sum after the
projection operator is taken into account, it will be necessary to look at the structure of each
such Pauli operator. To this end, we will denote by �i|x the action of �i on qubit x, and hence
�i|x 2 {I, X, Y, Z}. For simplicity we assume each �i is encoded across 3 qubits (since there are
only 8 possible angles). Thus, we have 1  x  (m + B + 3(m � n)), where 1  x  m identifies
qubits received from Alice, m + 1  x  m + B identifies qubits in Bob’s private register, and the
remaining x values identify the qubits containing �i. Without loss of generality, as Bob’s private
register is assumed to start in the state |0i⌦B we need only consider a decomposition in terms of �i

in which �i|x 2 {I, X} for all m + 1  x  m + B, since Z |0i = I |0i and Y |0i = iX |0i. Similarly,
without loss of generality we can take �i|x 2 {I, X} for all m + B < x, since each qubit in the
register containing the angles {�i} is a classical state (i.e. a computational basis state), and hence
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up to a global phase the action of Z is identical to that of I and the action of Y is identical to that
of X.

The probability of Alice accepting an incorrect outcome density operator is given by pincorrect =
Tr(
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In order to obtain an upper bound for the above expression we make use of sets of indices x
of qubits such that the action of �i at that position, �i|x, is a particular Pauli operator, which we
denote as follows:

Ai = {x s.t. �i|x = I and 1  x  m}
Bi = {x s.t. �i|x = X and 1  x  m}
Ci = {x s.t. �i|x = Y and 1  x  m}
Di = {x s.t. �i|x = Z and 1  x  m}.

Note that in the above we restrict attention to the set of qubits originally sent from Alice to Bob
(which is why 1  x  m), and disregard the action on Bob’s private qubits. Additionally, we will
make use of a superscript O to denote subsets of the above sets subject to the constraint that x is an
output qubit (m�n < x). Thus, for example, DO

i
= {x s.t. �i|x = Z and m�n+1  x  m}. We

note that only �i and �j operators for which Tr(P?�iP((⌦B |0i h0|) ⌦ | i h |)P�j) 6= 0 contribute
to pincorrect, and with the above definitions in place, we can express this succinctly as the condition
that |Bi|+ |Ci|+ |DO

i
| � 1 (denoted as i 2 Ei) and |Bj |+ |Cj |+ |DO

j
| � 1 (denoted as j 2 Ej). That

is to say, one or both of the following has happened: �i (�j) has produced an incorrect outcome for
one or more of the measurement results and hence |Bi/BO
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We note that averaging over r, x and ✓ for all qubits other than the trap qubit yields the
maximally mixed state of the system sent from Alice to Bob (both the initial qubits and the
angles �i) as per the proof of blindness, and so the reduced density matrix for that subsystem is
proportional to the identity. Therefore after the action of the protocol (P) we obtain the following:
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As all Pauli matrices other than the identity are traceless, any terms in the sum which are
non-zero necessarily have �i|� = �j|� everywhere except for � = t and the corresponding
delta register. We then consider the two cases corresponding to whether the trap is located
in the quantum output or not separately. If t 2 O then the delta register does not exist,
and using the fact that
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�

= 0, unless �i|t = �j|t, we
arrive at the conclusion that the only terms which contribute to pincorrect are those where
�i = �j . If, on the other hand, t /2 O, then averaging over rt alone is su�cient to give
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= 0, and hence �i|t = �j|t. In this case, averaging over ✓
yields the �t register in the maximally mixed state, and hence as before �i and �j must act
identically on these qubits too, in order to avoid contributing zero to the value of pincorrect.
Consequently the only terms which contribute are those for which �i = �j . Using this
identity with our previous expression for pincorrect, we obtain
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This can be further simplified, since |Ai| + |Bi| + |Ci| + |Di| = m, giving
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for the general case. However, for the specific case of only classical output, this bound can
be made tighter by performing the simplification in a di↵erent way, since |BO
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| = |CO
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| =
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Figure 4: The fact that any Uj in Figure 3 is independent of all �i<j , allows us to commute Uj to
the end of the circuit as shown above.

subscript on the ket to identify the relevant qubit. Thus we have

Tr(P ⌫

incorrect Bj(⌫)) = Tr(P? ⌦ |⌘⌫t i h⌘⌫t | (⌦P((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†⌦†)) .

Since any unitary operator can be written as linear combination of Pauli operators we have ⌦ =P
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↵i�i, where
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private qubits and | ⌫i. Therefore the above equation can be written as
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In order to determine which �i terms have a non-zero contribution in the above sum after the
projection operator is taken into account, it will be necessary to look at the structure of each
such Pauli operator. To this end, we will denote by �i|x the action of �i on qubit x, and hence
�i|x 2 {I, X, Y, Z}. For simplicity we assume each �i is encoded across 3 qubits (since there are
only 8 possible angles). Thus, we have 1  x  (m + B + 3(m � n)), where 1  x  m identifies
qubits received from Alice, m + 1  x  m + B identifies qubits in Bob’s private register, and the
remaining x values identify the qubits containing �i. Without loss of generality, as Bob’s private
register is assumed to start in the state |0i⌦B we need only consider a decomposition in terms of �i

in which �i|x 2 {I, X} for all m + 1  x  m + B, since Z |0i = I |0i and Y |0i = iX |0i. Similarly,
without loss of generality we can take �i|x 2 {I, X} for all m + B < x, since each qubit in the
register containing the angles {�i} is a classical state (i.e. a computational basis state), and hence
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up to a global phase the action of Z is identical to that of I and the action of Y is identical to that
of X.

The probability of Alice accepting an incorrect outcome density operator is given by pincorrect =
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In order to obtain an upper bound for the above expression we make use of sets of indices x
of qubits such that the action of �i at that position, �i|x, is a particular Pauli operator, which we
denote as follows:

Ai = {x s.t. �i|x = I and 1  x  m}
Bi = {x s.t. �i|x = X and 1  x  m}
Ci = {x s.t. �i|x = Y and 1  x  m}
Di = {x s.t. �i|x = Z and 1  x  m}.

Note that in the above we restrict attention to the set of qubits originally sent from Alice to Bob
(which is why 1  x  m), and disregard the action on Bob’s private qubits. Additionally, we will
make use of a superscript O to denote subsets of the above sets subject to the constraint that x is an
output qubit (m�n < x). Thus, for example, DO

i
= {x s.t. �i|x = Z and m�n+1  x  m}. We

note that only �i and �j operators for which Tr(P?�iP((⌦B |0i h0|) ⌦ | i h |)P�j) 6= 0 contribute
to pincorrect, and with the above definitions in place, we can express this succinctly as the condition
that |Bi|+ |Ci|+ |DO

i
| � 1 (denoted as i 2 Ei) and |Bj |+ |Cj |+ |DO
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We note that averaging over r, x and ✓ for all qubits other than the trap qubit yields the
maximally mixed state of the system sent from Alice to Bob (both the initial qubits and the
angles �i) as per the proof of blindness, and so the reduced density matrix for that subsystem is
proportional to the identity. Therefore after the action of the protocol (P) we obtain the following:
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As all Pauli matrices other than the identity are traceless, any terms in the sum which are
non-zero necessarily have �i|� = �j|� everywhere except for � = t and the corresponding
delta register. We then consider the two cases corresponding to whether the trap is located
in the quantum output or not separately. If t 2 O then the delta register does not exist,
and using the fact that
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yields the �t register in the maximally mixed state, and hence as before �i and �j must act
identically on these qubits too, in order to avoid contributing zero to the value of pincorrect.
Consequently the only terms which contribute are those for which �i = �j . Using this
identity with our previous expression for pincorrect, we obtain
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This can be further simplified, since |Ai| + |Bi| + |Ci| + |Di| = m, giving

pincorrect 
1

2m

X

k

X

i2Ei

|↵ki|
2
�
2m � 2(|Bi| + |Ci| + |DO

i
|) + |BO

i
| + |CO

i
|
�


1

2m

X

k

X

i2Ei

|↵ki|
2
�
2m � |Bi|� |Ci|� 2|DO

i
|
�


1

2m

X

k

X

i2Ei

|↵ki|
2 (2m � 1)

 1 �
1

2m

for the general case. However, for the specific case of only classical output, this bound can
be made tighter by performing the simplification in a di↵erent way, since |BO
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Figure 4: The fact that any Uj in Figure 3 is independent of all �i<j , allows us to commute Uj to
the end of the circuit as shown above.

subscript on the ket to identify the relevant qubit. Thus we have

Tr(P ⌫

incorrect Bj(⌫)) = Tr(P? ⌦ |⌘⌫t i h⌘⌫t | (⌦P((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†⌦†)) .

Since any unitary operator can be written as linear combination of Pauli operators we have ⌦ =P
i
↵i�i, where

P
i
↵i↵⇤

i
= 1 and �i is a Pauli operator acting on the joint quantum state of Bob’s

private qubits and | ⌫i. Therefore the above equation can be written as

Tr(P ⌫

incorrect Bj(⌫)) = Tr

0

@P? ⌦ |⌘⌫t i h⌘⌫t |

0

@
X

i,j

↵i↵
⇤
j �iP((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†�j

1

A

1

A

= Tr

0

@
X

i,j

↵i↵
⇤
j P? ⌦ |⌘⌫t i h⌘⌫t | (�iP((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†�j)

1

A .

In order to determine which �i terms have a non-zero contribution in the above sum after the
projection operator is taken into account, it will be necessary to look at the structure of each
such Pauli operator. To this end, we will denote by �i|x the action of �i on qubit x, and hence
�i|x 2 {I, X, Y, Z}. For simplicity we assume each �i is encoded across 3 qubits (since there are
only 8 possible angles). Thus, we have 1  x  (m + B + 3(m � n)), where 1  x  m identifies
qubits received from Alice, m + 1  x  m + B identifies qubits in Bob’s private register, and the
remaining x values identify the qubits containing �i. Without loss of generality, as Bob’s private
register is assumed to start in the state |0i⌦B we need only consider a decomposition in terms of �i

in which �i|x 2 {I, X} for all m + 1  x  m + B, since Z |0i = I |0i and Y |0i = iX |0i. Similarly,
without loss of generality we can take �i|x 2 {I, X} for all m + B < x, since each qubit in the
register containing the angles {�i} is a classical state (i.e. a computational basis state), and hence
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up to a global phase the action of Z is identical to that of I and the action of Y is identical to that
of X.

The probability of Alice accepting an incorrect outcome density operator is given by pincorrect =
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In order to obtain an upper bound for the above expression we make use of sets of indices x
of qubits such that the action of �i at that position, �i|x, is a particular Pauli operator, which we
denote as follows:

Ai = {x s.t. �i|x = I and 1  x  m}
Bi = {x s.t. �i|x = X and 1  x  m}
Ci = {x s.t. �i|x = Y and 1  x  m}
Di = {x s.t. �i|x = Z and 1  x  m}.

Note that in the above we restrict attention to the set of qubits originally sent from Alice to Bob
(which is why 1  x  m), and disregard the action on Bob’s private qubits. Additionally, we will
make use of a superscript O to denote subsets of the above sets subject to the constraint that x is an
output qubit (m�n < x). Thus, for example, DO

i
= {x s.t. �i|x = Z and m�n+1  x  m}. We

note that only �i and �j operators for which Tr(P?�iP((⌦B |0i h0|) ⌦ | i h |)P�j) 6= 0 contribute
to pincorrect, and with the above definitions in place, we can express this succinctly as the condition
that |Bi|+ |Ci|+ |DO

i
| � 1 (denoted as i 2 Ei) and |Bj |+ |Cj |+ |DO
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| � 1 (denoted as j 2 Ej). That
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We note that averaging over r, x and ✓ for all qubits other than the trap qubit yields the
maximally mixed state of the system sent from Alice to Bob (both the initial qubits and the
angles �i) as per the proof of blindness, and so the reduced density matrix for that subsystem is
proportional to the identity. Therefore after the action of the protocol (P) we obtain the following:
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As all Pauli matrices other than the identity are traceless, any terms in the sum which are
non-zero necessarily have �i|� = �j|� everywhere except for � = t and the corresponding
delta register. We then consider the two cases corresponding to whether the trap is located
in the quantum output or not separately. If t 2 O then the delta register does not exist,
and using the fact that
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Consequently the only terms which contribute are those for which �i = �j . Using this
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Figure 4: The fact that any Uj in Figure 3 is independent of all �i<j , allows us to commute Uj to
the end of the circuit as shown above.

subscript on the ket to identify the relevant qubit. Thus we have
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In order to determine which �i terms have a non-zero contribution in the above sum after the
projection operator is taken into account, it will be necessary to look at the structure of each
such Pauli operator. To this end, we will denote by �i|x the action of �i on qubit x, and hence
�i|x 2 {I, X, Y, Z}. For simplicity we assume each �i is encoded across 3 qubits (since there are
only 8 possible angles). Thus, we have 1  x  (m + B + 3(m � n)), where 1  x  m identifies
qubits received from Alice, m + 1  x  m + B identifies qubits in Bob’s private register, and the
remaining x values identify the qubits containing �i. Without loss of generality, as Bob’s private
register is assumed to start in the state |0i⌦B we need only consider a decomposition in terms of �i

in which �i|x 2 {I, X} for all m + 1  x  m + B, since Z |0i = I |0i and Y |0i = iX |0i. Similarly,
without loss of generality we can take �i|x 2 {I, X} for all m + B < x, since each qubit in the
register containing the angles {�i} is a classical state (i.e. a computational basis state), and hence
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up to a global phase the action of Z is identical to that of I and the action of Y is identical to that
of X.
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In order to obtain an upper bound for the above expression we make use of sets of indices x
of qubits such that the action of �i at that position, �i|x, is a particular Pauli operator, which we
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We note that averaging over r, x and ✓ for all qubits other than the trap qubit yields the
maximally mixed state of the system sent from Alice to Bob (both the initial qubits and the
angles �i) as per the proof of blindness, and so the reduced density matrix for that subsystem is
proportional to the identity. Therefore after the action of the protocol (P) we obtain the following:
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Figure 4: The fact that any Uj in Figure 3 is independent of all �i<j , allows us to commute Uj to
the end of the circuit as shown above.

subscript on the ket to identify the relevant qubit. Thus we have
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Since any unitary operator can be written as linear combination of Pauli operators we have ⌦ =P
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In order to determine which �i terms have a non-zero contribution in the above sum after the
projection operator is taken into account, it will be necessary to look at the structure of each
such Pauli operator. To this end, we will denote by �i|x the action of �i on qubit x, and hence
�i|x 2 {I, X, Y, Z}. For simplicity we assume each �i is encoded across 3 qubits (since there are
only 8 possible angles). Thus, we have 1  x  (m + B + 3(m � n)), where 1  x  m identifies
qubits received from Alice, m + 1  x  m + B identifies qubits in Bob’s private register, and the
remaining x values identify the qubits containing �i. Without loss of generality, as Bob’s private
register is assumed to start in the state |0i⌦B we need only consider a decomposition in terms of �i

in which �i|x 2 {I, X} for all m + 1  x  m + B, since Z |0i = I |0i and Y |0i = iX |0i. Similarly,
without loss of generality we can take �i|x 2 {I, X} for all m + B < x, since each qubit in the
register containing the angles {�i} is a classical state (i.e. a computational basis state), and hence
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up to a global phase the action of Z is identical to that of I and the action of Y is identical to that
of X.
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In order to obtain an upper bound for the above expression we make use of sets of indices x
of qubits such that the action of �i at that position, �i|x, is a particular Pauli operator, which we
denote as follows:
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Bi = {x s.t. �i|x = X and 1  x  m}
Ci = {x s.t. �i|x = Y and 1  x  m}
Di = {x s.t. �i|x = Z and 1  x  m}.
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We note that averaging over r, x and ✓ for all qubits other than the trap qubit yields the
maximally mixed state of the system sent from Alice to Bob (both the initial qubits and the
angles �i) as per the proof of blindness, and so the reduced density matrix for that subsystem is
proportional to the identity. Therefore after the action of the protocol (P) we obtain the following:
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As all Pauli matrices other than the identity are traceless, any terms in the sum which are
non-zero necessarily have �i|� = �j|� everywhere except for � = t and the corresponding
delta register. We then consider the two cases corresponding to whether the trap is located
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for the general case. However, for the specific case of only classical output, this bound can
be made tighter by performing the simplification in a di↵erent way, since |BO
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Figure 4: The fact that any Uj in Figure 3 is independent of all �i<j , allows us to commute Uj to
the end of the circuit as shown above.

subscript on the ket to identify the relevant qubit. Thus we have

Tr(P ⌫

incorrect Bj(⌫)) = Tr(P? ⌦ |⌘⌫t i h⌘⌫t | (⌦P((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†⌦†)) .

Since any unitary operator can be written as linear combination of Pauli operators we have ⌦ =P
i
↵i�i, where

P
i
↵i↵⇤

i
= 1 and �i is a Pauli operator acting on the joint quantum state of Bob’s

private qubits and | ⌫i. Therefore the above equation can be written as

Tr(P ⌫
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0

@
X

i,j

↵i↵
⇤
j P? ⌦ |⌘⌫t i h⌘⌫t | (�iP((⌦B |0i h0|) ⌦ | ⌫i h ⌫ |)P†�j)

1

A .

In order to determine which �i terms have a non-zero contribution in the above sum after the
projection operator is taken into account, it will be necessary to look at the structure of each
such Pauli operator. To this end, we will denote by �i|x the action of �i on qubit x, and hence
�i|x 2 {I, X, Y, Z}. For simplicity we assume each �i is encoded across 3 qubits (since there are
only 8 possible angles). Thus, we have 1  x  (m + B + 3(m � n)), where 1  x  m identifies
qubits received from Alice, m + 1  x  m + B identifies qubits in Bob’s private register, and the
remaining x values identify the qubits containing �i. Without loss of generality, as Bob’s private
register is assumed to start in the state |0i⌦B we need only consider a decomposition in terms of �i

in which �i|x 2 {I, X} for all m + 1  x  m + B, since Z |0i = I |0i and Y |0i = iX |0i. Similarly,
without loss of generality we can take �i|x 2 {I, X} for all m + B < x, since each qubit in the
register containing the angles {�i} is a classical state (i.e. a computational basis state), and hence
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up to a global phase the action of Z is identical to that of I and the action of Y is identical to that
of X.

The probability of Alice accepting an incorrect outcome density operator is given by pincorrect =
Tr(
P

⌫
p(⌫) P ⌫

incorrect
Bj(⌫)). This can be calculated via the expression for Tr(P ⌫
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Bj(⌫))

obtained earlier
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In order to obtain an upper bound for the above expression we make use of sets of indices x
of qubits such that the action of �i at that position, �i|x, is a particular Pauli operator, which we
denote as follows:

Ai = {x s.t. �i|x = I and 1  x  m}
Bi = {x s.t. �i|x = X and 1  x  m}
Ci = {x s.t. �i|x = Y and 1  x  m}
Di = {x s.t. �i|x = Z and 1  x  m}.

Note that in the above we restrict attention to the set of qubits originally sent from Alice to Bob
(which is why 1  x  m), and disregard the action on Bob’s private qubits. Additionally, we will
make use of a superscript O to denote subsets of the above sets subject to the constraint that x is an
output qubit (m�n < x). Thus, for example, DO

i
= {x s.t. �i|x = Z and m�n+1  x  m}. We

note that only �i and �j operators for which Tr(P?�iP((⌦B |0i h0|) ⌦ | i h |)P�j) 6= 0 contribute
to pincorrect, and with the above definitions in place, we can express this succinctly as the condition
that |Bi|+ |Ci|+ |DO

i
| � 1 (denoted as i 2 Ei) and |Bj |+ |Cj |+ |DO

j
| � 1 (denoted as j 2 Ej). That

is to say, one or both of the following has happened: �i (�j) has produced an incorrect outcome for
one or more of the measurement results and hence |Bi/BO

i
|+ |Ci/CO

i
| � 1 (|Bj/BO

j
|+ |Cj/CO

j
| � 1)

or �i (�j) acts non-trivially on the quantum output and hence |BO
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| + |CO

i
| + |DO

i
| � 1 (|BO
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| +
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j
| + |DO

j
| � 1). Thus after expanding the random variable ⌫ we have
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We note that averaging over r, x and ✓ for all qubits other than the trap qubit yields the
maximally mixed state of the system sent from Alice to Bob (both the initial qubits and the
angles �i) as per the proof of blindness, and so the reduced density matrix for that subsystem is
proportional to the identity. Therefore after the action of the protocol (P) we obtain the following:
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• Huge overhead 



Linear Server overhead

Fig. 1. Dotted-triple-graph. Circles: primary vertices with base-location of vertex of the
base-graph; Squares: added vertices with base-location of edges of the base-graph. (a)
Trap-colouring. Blue: input qubits; Green: gate qubits; White/black: trap qubits; Red:
wiring qubits. Client chooses the colours randomly for each vertex with base-location
of vertex of the base-graph and prepares each qubit individually before sending them
one by one to the server to entangle them according to the generic construction. (b)
After entangling, the breaking operation defined by the wiring qubits will reduce the
graph in (a) to the computation graph and for each vertex a corresponding trap/tag
qubits.

Protocol 2 continuing: VUBQC with DT(G)

• Step i : 1  i  3N(3c+ 1)
– Client’s move: Client computes the angle �i = C(i,�i, ✓i, ri, s) and sends it to the
Server.
– Server’s move: Server measures qubit i with angle �i and sends the Client the
result bi.
– Client’s move: Client sets the value of si in s to be bi + ri.

• Final Step:

– Server’s move: Server returns the last layer of qubits (output layer) to the Client.

• Verification

– After obtaining the output qubits from the Server, the Client measures the output
trap qubits with angle �t = ✓t + rt⇡ to obtain bt.
– Client accepts if bi = ri for all the white (primary) and black (added) trap qubits i.

2.2 Two-party quantum protocols

The impossibility of achieving unconditionally secure two-party cryptographic
protocols has led to the definition and use of simpler hardware or software prim-
itives to form the basis for the desired functionalities. A one out of n oblivious
transfer (OT) is a two party protocol where one party (Alice) has input n mes-
sages (x1, · · · , xn) and the other party (Bob) inputs a number c 2 {1, · · · , n}
and receives the message xc with the following guarantees: Bob learns nothing
about the other messages xi|i 6= c and Alice is “oblivious” (does not know) which
message Bob obtained (i.e. does not know the value c) [34]. A hardware token
that implements a non-interactive OT is called one-time-memory (OTM) [6]. We
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Kashefi, Walden, 2014 
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(a) 

(b) 

Figure 1: (Color online) Hierarchical modular quantum computer ar-
chitecture hosting N = NELUNq qubits. (a) The elementary logic
units (ELU) consists of a register of Nq trapped atomic ion qubits,
whereby entangling quantum logic gates are mediated through the
local Coulomb interaction between qubits. (b) One or more atomic
qubits within each of the NELU registers are coupled to photonic
quantum channels, and through a reconfigurable optical crosscon-
nect switch (OXC, center), fiber beamsplitters and position sensitive
imager (right), qubits between different registers can be entangled.

scaling is likely limited by the complexity of the trap design,
diffraction of optical beams, and the hardware controllers to
operate the system.

Here we describe and analyze a modular universal scal-
able ion trap quantum computer (MUSIQC) architecture that
may enable construction of quantum processors with up to
106 qubits utilizing component technologies that have already
been demonstrated. This architecture features two elements:
stable trapped ion multi-qubit registers that can further be
connected with ion shuttling, and scalable photonic intercon-
nects that can link these registers in a flexible configuration
over large distances, as shown in Fig. 1. We articulate ar-
chitectural advantages of this approach that allows significant
speedup and resource reduction in quantum circuit execution
over other hardware architectures, enabled by the ability to op-
erate quantum gates between qubits throughout the entire pro-
cessor regardless of their relative location. Finally, we prove
how such a quantum network can support fault-tolerant error
correction even in the face of probabilistic interconnects, and
discuss the technological developments necessary for its real-
ization. While we focus our discussions on quantum registers
composed of trapped atomic ions, the networking aspect of
this architecture is applicable to other qubit platforms that fea-
ture strong optical transitions, such as quantum dots, neutral
atoms, or nitrogen-vacancy (NV) color centers in diamond [1].

II. QUANTUM COMPUTING IN A MODULAR
ARCHITECTURE

A. The Modular Elementary Logic Unit (ELU)

The base unit of MUSIQC is a collection of Nq qubit mem-
ories with local interactions, called the Elementary Logic Unit

Qubit ions 

“Refrigerator” ions Communication qubit 

(a) (b) 

Collection optics 

Single mode fiber 

Control laser fields Excitation laser field 

Figure 2: (Color online) Elementary Logic Unit (ELU) composed
of a single crystal of Nq trapped atomic ion qubits coupled through
their collective motion. (a) Classical laser fields impart qubit state-
dependent forces on one or more ions, affecting entangling quantum
gates between the memory qubits. Second ion species is introduced
as refrigeration ions. (b) One or more of the ions (rightmost in the
figure) are coupled to a photonic interface, where a classical laser
pulse maps the state of these communication qubits onto the states
of single photons (e.g., polarization or frequency), which then prop-
agate along an optical fiber to be interfaced with other ELUs.

(ELU). Quantum logic operations within the ELU are ideally
fast and deterministic, with error rates sufficiently small that
fault-tolerant error correction within an ELU is possible [21].
We represent the ELU with a crystal of Nq � 1 trapped
atomic ions as shown in Fig. 2a, with each qubit comprised of
internal energy levels of each ion, labeled as |"iand |#i, sepa-
rated by frequency !0. We assume the qubit levels are coupled
through an atomic dipole operator µ̂ = µ(|"i h#| + |#i h"|).
The ions interact through their external collective modes of
quantum harmonic motion. Such phonons can be used to
mediate entangling gates through application of qubit-state-
dependent optical or microwave dipole forces [22–24]. There
are many known protocols for phonon-based gates between
ions, and here we summarize the main points relevant to the
size of the ELU and the larger architecture.

An externally applied near-resonant running wave field
with amplitude E(x̂) = E0eikx̂ and wavenumber k cou-
ples to the atomic dipole through the interaction Hamiltonian
Ĥ = �µ̂E(x̂), and by suitably tuning the field near sidebands
induced by the harmonic motion of the ions [12] a qubit state
dependent force results. In this way, qubits can be mapped
onto phonon states [12, 22] and then onto other qubits for
entangling operations with characteristic speed Rgate = ⌘⌦,
where ⌘ =

p
~k2/(2m0Nq!) is the Lamb Dicke parameter,

m0 is the mass of each ion, ! the frequency of harmonic os-
cillation of the collective phonon mode, and ⌦ = µE0/2~ is
the Rabi frequency of the atomic dipole independent of mo-
tion. For optical Raman transitions between qubit states (e.g.,
atomic hyperfine ground states) [12], two fields are each de-
tuned by � from an excited state of linewidth � ⌧ �, and
when their difference frequency is near resonant with the qubit
frequency splitting !0, we use instead ⌦ = (µE0)2/(2~2�).

The typical gate speed within an ELU therefore slows down
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X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌥R {0, 1}

⇥x,y ⌥R {0, · · · , 7⇤/4}

sx,y := sx,y + rx,y

|0⌦, |1⌦

BPP ⇧ QNC
NC2 ⇧ QNC1

|+⇥⌦, |�⇥⌦

M ⇥|+⇥⌦ ⌃ s = 0

M ⇥|�⇥⌦ ⌃ s = 1

3



Target computation 



Blind Target computation 



Insertion of Trap

Target Computation

Test Computation
k-colouring

Trap

Dummy

|+⌦ = 1⇥
2
(|0⌦+ |1⌦)

|⇧⌦

|±⌦

X

Z

H

J(� + ⇥ + r⇤)

⌅r

|+⇥⌦

|±�+⇥+r⇤⌦

{|+⇥⌦}
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X = (Ũ , {⌅x,y})

⌅�x,y = (�1)sX
x,y⌅x,y + sZ

x,y⇤

rx,y ⌥R {0, 1}

⇥x,y ⌥R {0, · · · , 7⇤/4}

sx,y := sx,y + rx,y

|0⌦, |1⌦

BPP ⇧ QNC
NC2 ⇧ QNC1

|+⇥⌦, |�⇥⌦

M ⇥|+⇥⌦ ⌃ s = 0

M ⇥|�⇥⌦ ⌃ s = 1

3

|+⌦ = 1⇥
2
(|0⌦+ |1⌦)

|⇧⌦

|±⌦

X

Z

H

J(� + ⇥ + r⇤)

⌅r

|+⇥⌦

|±�+⇥+r⇤⌦

{|+⇥⌦}
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Test and Compute

Verifier counts the number of failed test rounds If  >  threshold w, aborts 

Otherwise accepts the majority outcome of the computation rounds as output



Protocol Features



Protocol Features

Redo Option
Verifier or Server may experience unintentional devices failures



Protocol Features

Redo Option
Verifier or Server may experience unintentional devices failures

Exponential Security Amplification

quantum attacks entangled across rounds are much more powerful than what classical correlations allow



Protocol Features

Redo Option
Verifier or Server may experience unintentional devices failures

Exponential Security Amplification

quantum attacks entangled across rounds are much more powerful than what classical correlations allow

Fine-Tuning the Number of Repetitions

Small k-colouring of the graph



Protocol Features
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Verifier or Server may experience unintentional devices failures

Exponential Security Amplification

quantum attacks entangled across rounds are much more powerful than what classical correlations allow

Fine-Tuning the Number of Repetitions
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Composable Security
Abstract Cryptography
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Robustness

On honest (but possibly noisy) devices, 
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Summary

Decoupling Verifiability and Fault-Tolerance

the average ratio of failed test rounds to be upper-bounded

all qubits can be devoted to useful computations irrespective of the desired security
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• Prepare and send vs. entanglement-based


• Single vs. multiple servers


• Online vs. offine


• Device-independent vs. one-sided device-independent


• I.I.D. states vs. general states


• Privacy preserving vs non-hiding


• Universal vs non-universal


• And many others

Price of Verification
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