Quantum Verification

Elham Kashefi

University of Edinburgh CNRS LIP6 Sorbonne Universite VeriQloud Ltd

Quantum DRAMA

A powerful quantum device

Vs

Verifier (with restricted computational power)

Quantum DRAMA

Quantum Advantage

Quantum Devices Noise

Quantum Verification

Quantum Verification

- Powerful quantum server(s)
- Certify the correctness of the computation

Completeness:
$$(\forall x \in L) \operatorname{Pr} [(V \leftrightarrow P)(x) \ accepts] = 1$$

Completeness:
$$(\forall x \in L) \operatorname{Pr} [(V \leftrightarrow P)(x) \ accepts] = 1$$

Soundness:
$$(\forall x \notin L)(\forall P') \operatorname{Pr}\left[(V \leftrightarrow P')(x) \ accepts\right] \leq \frac{1}{2}$$

BPP as Interactive Proof System

Yes *X* satisfies some property

Towards Practical Verification

Gottesman (04) - Vazirani (07) - Aaronson \$25 Challenge (07)

Does BQP admit a quantum interactive protocol where the honest prover is in BQP and the verifier is in BPP?

Towards Practical Verification

Gottesman (04) - Vazirani (07) - Aaronson \$25 Challenge (07)

Does BQP admit a quantum interactive protocol where the honest prover is in BQP and the verifier is in BPP?

Yes, if verifier can prepare some random qubits

Yes, if provers are entangled but none-communicating

Yes, if malicious prover cannot break LWE

Aharonov, Ben-Or, and Eban, ICS 2010 Broadbent, Fitzsimons and Kashefi, FOCS 2009

Reichardt, Unger, Vazirani, Nature 2013

Mahadev, FOCS 2018

• Correctness: in the absence of any *interference/noise/deviation*, verifier accepts and the computation output is correct

• Soundness: Verifier rejects an incorrect output, except with probability at most exponentially small in the security parameter

Protocol	Verifier resources	Communication	2-way quantum comm.
Clifford-QAS VQC	$O(log(1/\epsilon))$	$O(N \cdot log(1/\epsilon))$	Y
Poly-QAS VQC	$O(log(1/\epsilon))$	$O((n+L) \cdot log(1/\epsilon))$	N
VUBQC	O(1)	$O(N \cdot log(1/\epsilon))$	N
Test-or-Compute	O(1)	$O((n+T) \cdot log(1/\epsilon))$	Ν

x the input to this circuit, then $n = |x|, N = |\mathcal{C}|$

Single-prover receive-and-measure

verifier receives quantum states from the prover and has the ability to measure them

- Post-hoc Verification (none hiding)
- Measuring only blind QC

Protocol	Measurements	Observables	Blind
Measurement-only	$O(N \cdot 1/lpha \cdot 1/\epsilon^2)$	5	Y
Hypergraph measurement-only	$O(max(N, 1/\epsilon^2)^{22})$	3	Y
1S-Post-hoc	$O(N^2 \cdot log(1/\epsilon))$	2	Ν
Steering-based VUBQC	$O(N^{13}log(N) \cdot log(1/\epsilon))$	5	Y

Protocol	Provers	Qmem provers	Rounds	Communication	Blind
RUV	2	2	$O(N^{8192} \cdot log(1/\epsilon))$	$O(N^{8192} \cdot log(1/\epsilon))$	Y
McKague	$O(N^{22} \cdot log(1/\epsilon))$	0	$O(N^{22} \cdot log(1/\epsilon))$	$O(N^{22} \cdot log(1/\epsilon))$	Y
GKW	2	1	$O(N^{2048} \cdot log(1/\epsilon))$	$O(N^{2048} \cdot log(1/\epsilon))$	Y
HPDF	$O(N^4 log(N) \cdot log(1/\epsilon))$	$O(log(1/\epsilon))$	$O(N^4 log(N) \cdot log(1/\epsilon))$	$O(N^4 log(N) \cdot log(1/\epsilon))$	Y
\mathbf{FH}	5	5	$O(N^{16} \cdot log(1/\epsilon))$	$O(N^{19} \cdot log(1/\epsilon))$	Ν
NV	7	7	O(1)	$O(N^3 \cdot log(1/\epsilon))$	Ν

Prepare and Send Verification

Soundness

Verifier

 ν

random parameters

Soundness

Verifier Prover/Device

 ν

random parameters

For any

Prover's deviation/cheating strategy (Any noise/failure model)

the probability of verifier accepting an incorrect outcome density operator is bounded by ϵ :

$$P_{incorrect}^{\nu} = \left(\mathbb{I} - |\Psi_{ideal}^{\nu}\rangle \left\langle \Psi_{ideal}^{\nu}|\right) \otimes |r_{t}^{\nu}\rangle \left\langle r_{t}^{\nu}\right|$$
Accept Key

Accept Key

 $\sum_{\nu} p(\nu) \ Tr\left(P_{incorrect}^{\nu} B(\nu)\right) \leq \epsilon$

Test or Compute

Reduction

Reduction

cryptography reduces the **verification** problem to **error-detection** procedure bypassing the complexity of simulation

Cryptography Toolkit

Broadbent, Fitzsimons and Kashefi, FOCS09

Cryptography Toolkit

Universal Blind Quantum Computing: QKD + Teleportation

Broadbent, Fitzsimons and Kashefi, FOCS09

Verifiable Universal Blind Quantum Computing: QKD + Teleportation + Test

$$B_{j}(\nu) = \operatorname{Tr}_{B}\left(\sum_{b} |b + c_{r}\rangle \langle b| C_{\nu_{C},b} \Omega \mathcal{P}((\otimes^{B} |0\rangle \langle 0|) \otimes |\Psi^{\nu,b}\rangle \langle \Psi^{\nu,b}|) \mathcal{P}^{\dagger} \Omega^{\dagger} C_{\nu_{C},b}^{\dagger} |b\rangle \langle b + c_{r}|\right)$$

$$B_{j}(\nu) = \operatorname{Tr}_{B}\left(\sum_{b} |b + c_{r}\rangle \langle b| C_{\nu_{C},b}\Omega \mathcal{P}((\otimes^{B} |0\rangle \langle 0|) \otimes |\Psi^{\nu,b}\rangle \langle \Psi^{\nu,b}|) \mathcal{P}^{\dagger}\Omega^{\dagger}C_{\nu_{C},b}^{\dagger} |b\rangle \langle b + c_{r}|\right)$$

$$B_{j}(\nu) = \operatorname{Tr}_{B}\left(\sum_{b} \left|b + c_{r}\right\rangle \left\langle b\right| C_{\nu_{C},b} \Omega \mathcal{P}(\left(\otimes^{B} \left|0\right\rangle \left\langle 0\right|\right) \otimes \left|\Psi^{\nu,b}\right\rangle \left\langle\Psi^{\nu,b}\right|\right) \mathcal{P}^{\dagger} \Omega^{\dagger} C_{\nu_{C},b}^{\dagger} \left|b\right\rangle \left\langle b + c_{r}\right|\right)$$

Soundness Proof

 $p_{incorrect} = \sum_{\nu} p(\nu)' \operatorname{Tr}(P_{\perp} \otimes |\eta_t^{\nu}\rangle \langle \eta_t^{\nu}| \ (\Omega \mathcal{P}((\otimes^B |0\rangle \langle 0|) \otimes |\Psi^{\nu}\rangle \langle \Psi^{\nu}|) \mathcal{P}^{\dagger}\Omega^{\dagger})).$

Summary

(a) Trap-colouring

Kashefi, Walden, 2014

The challenge of fault tolerant verification

Aharonov, Ben-Or, Eban, Mahadev, 2015

Linear Server overhead

Linear Server overhead

Inverse-polynomial security

Linear Server overhead

Inverse-polynomial security

Bootstrapping via Fault Tolerance encoding

Linear Server overhead

Inverse-polynomial security

Bootstrapping via Fault Tolerance encoding

Huge Server overhead

New Result

Leichtle, Music, Kashefi, Ollivier, PRX, 2021

BQP: Classical Input/Output

New Result

Leichtle, Music, Kashefi, Ollivier, PRX, 2021

No Server overhead

BQP: Classical Input/Output

New Result

Leichtle, Music, Kashefi, Ollivier, PRX, 2021

No Server overhead

BQP: Classical Input/Output

BQP: Classical Input/Output New Result Leichtle, Music, Kashefi, Ollivier, PRX, 2021 No Server overhead Inverse-polynomial security Classical Repetition Code

Prepare and Send Verification

Target computation

Blind Target computation

Insertion of Trap

Insertion of Trap

Test and Compute

n := t + d

Test and Compute

n := t + d

Verifier counts the number of failed test rounds If > threshold *w*, aborts

Otherwise accepts the majority outcome of the computation rounds as output

Protocol Features

Protocol Features Redo Option Verifier or Server may experience unintentional devices failures

quantum attacks entangled across rounds are much more powerful than what classical correlations allow

Fine-Tuning the Number of Repetitions

Small *k*-colouring of the graph

Protocol Features Redo Option Verifier or Server may experience unintentional devices failures **Exponential Security Amplification** quantum attacks entangled across rounds are much more powerful than what classical correlations allow

Fine-Tuning the Number of Repetitions

Small *k*-colouring of the graph

Composable Security

Abstract Cryptography

Security Proof

Theorem 1 (Security of Protocol 1). For n = d+t such that d/n and t/n are fixed in (0, 1) and w such that w/t is fixed in $(0, \frac{1}{k} \cdot \frac{2p-1}{2p-2})$, where p is the inherent error probability of the BQP computation, Protocol 1 with d computation rounds, t test rounds, and a maximum number of tolerated failed test rounds of w is ϵ -composably-secure with ϵ exponentially small in n.

Robustness

On honest (but possibly noisy) devices, the protocol accepts with high probability

Robustness

On honest (but possibly noisy) devices, the protocol accepts with high probability

- The noise can be modelled by round-dependent Markovian processes – i.e. a possibly different arbitrary CPTP map acting on each round.
- The probability that at least one of the trap measurements fails in any single test round is upperbounded by some constant $p_{max} < \frac{1}{k} \cdot \frac{2p-1}{2p-2}$ and lower-bounded by $p_{min} \leq p_{max}$.

Summary

Decoupling Verifiability and Fault-Tolerance

Summary

Decoupling Verifiability and Fault-Tolerance

all qubits can be devoted to useful computations irrespective of the desired security

the average ratio of failed test rounds to be upper-bounded

- Online vs. offine
- Device-independent vs. one-sided device-independent
- I.I.D. states vs. general states
- Privacy preserving vs non-hiding
- Universal vs non-universal
- And many others

Eisert, Hangleiter, Walk, Roth, Markham, Parekh, Chabaud, Kashefi

Enforcing the *correct functioning* of a quantum device, using the minimum amount of *resources*, while making as few *assumptions* as possible.

Eisert, Hangleiter, Walk, Roth, Markham, Parekh, Chabaud, Kashefi

Enforcing the *correct functioning* of a quantum device, using the minimum amount of *resources*, while making as few *assumptions* as possible.

Eisert, Hangleiter, Walk, Roth, Markham, Parekh, Chabaud, Kashefi

Figures of merit

Enforcing the *correct functioning* of a quantum device, using the minimum amount of *resources*, while making as few *assumptions* as possible.

User/Device tunability resources

Eisert, Hangleiter, Walk, Roth, Markham, Parekh, Chabaud, Kashefi

Figures of merit

Enforcing the *correct functioning* of a quantum device, using the minimum amount of *resources*, while making as few *assumptions* as possible.

User/Device tunability resources

Enforcing the *correct functioning* of a quantum device, using the minimum amount of *resources*, while making as few *assumptions* as possible.

User/Device tunability resources Noise Model

Ongoing Project for Practical Implementation

Ongoing Project for Practical Implementation

Ongoing Project for Practical Implementation

1 TENNER

Standard

QUANTUM INTERNET ALLIANCE

