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2012:A deep neural network beats other
approaches clearly, in the “ImageNet” competition

|.2 million training pictures
(annotated by humans)



since 2012: rapid proliferation of real-world
applications of artificial neural networks

image labeling, translation, speech recognition, ...



since ~20I6 more and more examples in phy5|cs

paramagnetlc “ferromagnetic”

statistical physics, quantum many-body physics,
dynamical systems, experimental data analysis,
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Training: adapt weights to come closer to
correct input/output relation, based on
thousands of training examples
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A Machine learning is not a magic bullet!



A Machine learning is not a magic bullet!

Training a neural network is a highly nonlinear and
stochastic process (not well-understood theoretically)

Results depend on the quantity and quality of training data

It is no substitute for basic understanding

Interpretation requires care



A Machine learning is not a magic bullet!

Training a neural network is a highly nonlinear and
stochastic process (not well-understood theoretically)

Results depend on the quantity and quality of training data

It is no substitute for basic understanding

Interpretation requires care

...but it can be useful and is fun!
(much to explore)






Classical Machine Learning
for Quantum Technology

— a brief survey of an
evolving field

image: Chou et al. Nature 2018



Observations
(measurements)

what to measure next!
(adaptive)

Interpretation

which quantum state?
which parameters of
the model?

how to control the

quantum system!?
(feedback)




Observations

(measurements) Interpretation
which quantum state?
Training: which parameters of
on simulations!? the model?
on a real experiment?

what to measure next!
(adaptive)

how to control the

quantum system?
(feedback)



Readout: time traces
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time
(use recurrent neural networks, i.e. nets with memory)

advantage: NN trained on real data learns
all possible distortions and noise sources



Readout: time traces

continuous ?
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E. Fleurin et al 2018 (s.c. qubit readout experiment)



Interpreting error syndromes

(surface code)



Interpreting error syndromes

SO wSC

(surface code)

Melko et al 2017, Jiang et al, Bayreuther and Beenakker, ...



Adaptive measurements
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choice of msmt basis ‘

controller

B. Sanders group 2010-now
(particle swarm)

with NN: e.g. Quek et al 2021




Reconstruction of quantum states

measurements
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("Boltzmann
machine")

e.g. Torlai et al 2019 (represents
many-body state)






Calibration/tuning/learning Hamiltonians

choice of
measurement/
parameters/
pulses

result

controller




Calibration/tuning/learning Hamiltonians

measuring a quantum dot:
deciding where to measure next

Bias voltage

Gate voltage

Natalia Ares group, 2018 & ...



Calibration/tuning/learning Hamiltonians

Setup for diamond NV centre

Wang, Paesani,
Santagati et al

(Thompson group
Bristol) 2017




Producing new experimental layouts

combine optical
elements to produce
highly entangled states

Krenn et al
2016

Briegel group

Melnikov et al
PNAS 2018




Quantum control and feedback

&

open-loop closed-loop
(no feedback) (with feedback)

typical state preparation, unitary synthesis,

tasks: state/subspace stabilization, feedback
cooling and initialization, quantum
error correction



Quantum control and feedback

&

traditional: numerical techniques like GRAPE

new machine-learning techniques:

model-free (implicitly learn model from behaviour)
can easily include feedback
profit from computer science method development



Quantum control

Qubit control

Bukov et al PRX 2018
August, Hernandez-Lobato 2018
Niu et al 2019



Quantum control

one aspect of 'quantum machine learning":

optimizing control parameters
irectly on a quantum device
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e.g. Azpuru-Guzik group 2018



Deep
Reinforcement
Learning



“Supervised learning”
(most neural network applications)

4 5

teacher student
(smart) (imitates teacher)

final level limited by teacher



“Reinforcement learning”
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student/scientist
(tries out things)

final level: unlimited (?)
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observe state, pick action, get reward

“policy”

state - action

observation
RL-agent RL-environment
Policy: 7Tg (at ‘ St) — probability to pick action (¢

given observed state S¢
at time t



Maximize expected “return” R :sum of rewards

00; = i}_{ = Z 0 Ri In g (az|st)
8‘93' t .

| 09
“Policy gradient”,“REINFORCE” (Williams 1992)
Today: deep reinforcement learning

with deep neural networks: high-dimensional
states and actions



Discover Feedback Strategies
(beyond GRAPE etc.)

No feedback: A" strategies (A #actions N #steps)
With feedback: AM" strategies (M #msmt outcomes)

Model-free

No need to develop/fit/calibrate model/equations for
dynamics of the world/the device

...can learn on real devices, with all imperfections



RL with deep neural networks:
Handle arbitrary observations

(images, videos, measurement results of any kind,
sentences, graphs, quantum states, quantum circuits...)

Need to see many evolutions!
tens of thousands

Cannot discover 'isolated/rare-event’ strategies
(also true for any other non-domain-specific algorithm)



g~ Discovering
L W &\ Qyuantum Error

vERERRE Correction
& Strategies

work with Thomas Fosel, Petru Tighineanu, and
Talitha Weiss

Physical Review X 031084 (2018)



temporal correlations of noise

Quantum Error Correction: many approaches
A

dynamical
decoupling

adaptive noise
estimation

stabilizer codes decoherence-free
subspaces

spatial correlations of noise

>



temporal correlations of noise

Quantum Error Correction: many approaches
A

ce-free

spatial correlations of noise

>



Goal: protect a small quantum module against noise

qubits




acton (gate) L~ qubits
e heural // | w

» » network
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1 ~ ~ noise
measurement
RL-agent RL-environment

try out actions, get reward, improve strategy, ...



Initialize qubit here: |¥(0)) = a |0) 4+ 3 |1)

t CNOT CNOT
CNO

™ % ~ _ qubits

noise
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measurement
RL-agent RL-environment

example: 4 qubits, measurements possible on
all, CNOTs between all, bit-flip noise on all




The network...
b revere
avoids catastrophic
4. atter 60 epod IT€ASUrEmMents
- finds repetition code

—j encoding sequence

after 160 ep{ diSCOVErs parity

N B R R R R detections
= =1 - DD
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applies them
periodically

time-step

(natural policy gradient)

Physical Review X 031084 (2018)



S/ Training Progress
su%)uz
¢

measure of success=
"recoverable quantum information”

09 1

0 500 2500 22500
training epoch (simulation run)

Physical Review X 031084 (2018)



Different topologies
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Different class of scenarios: Dephasing by a noisy field

Network discovers adaptive noise estimation strategy
Strategy = decision tree
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Two key concepts to make it work

Construct smart reward
("Recoverable Quantum Information")

As much information as possible &
two-stage learning

Physical Review X 031084 (2018)



unrealistically simpler, realistic
powerful network network

teach

gquantum state measurement results

“Two-stage learning”



main advantage: flexibility
— applicable to many other physical settings

cavities

ion trap chips
=== V=—"4F\ \C

Ancilla
rotation Readout Readout

input output

(Schoelkopf, Devoret lab 2016)

(Monroe, Kim Science 2013)



Currently: First steps
towards

deep reinforcement
learning on
experimental
platforms

example: optimizing
control pulses for
supercond. g. proc.
(state for agent =
quantum state
tomography)
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Agent
Learning Algorlthm

b Step Action

A — G — PR

c Episode Full Gate

oAl AP AP
Baum et al. 2021



Quantum Circuit
Optimization

work with Thomas Fosel, Murphy Yuezhen Niu, and Li Li
(Google Research)
arXiv 2103.07585



Quantum Circuit Optimization:
reduce gate count / depth / etc.!

qubit 1
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moment (physical time)




NISQ devices: Quantum Circuit Optimization critical
...and needs to be hardware-dependent

[not on an abstract level designed for large-scale
fault-tolerant circuits]
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Transformation rules




Deep reinforcement learning approach

equivalent, more
original circuit efficient circuit

circuilt
optimization

agent
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hardware-efficient, cross-platform, autonomous, reliable



Choices: States, Agent, Actions, Rewards




Choices: States, Agent, Actions, Rewards

moment
_quit Aich:n nel

index index

qubit moment
index mﬂ

transformation rule
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state value V(s)

observation for circuit=state s convolutional neural network

Technique: Advantage Actor Critic (namely: PPO)



Choices: States, Agent, Actions, Rewards

policy 7(als)

—-@

state value V/(s)




Choices: States, Agent, Actions, Rewards

moment
QUbit Aich:n nel

index index

qubit moment
index
transformation rule
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state value V(s)

agent=
convolutional neural network

Reward: reduction in gate count, depth, or combination
(possibly: gate-dependent, decoherence estimate, ...)



Training on Random Circuits

random gate dataset preprocessing expansion via

combination initial pruning random transformations

example
circuit

optimization
by RL agent

values for
trained agent
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depth d

gate count n

100
80 A

60 A

Training on Random Circuits: Progress

RL training progress

in-game progress (end of training)

—— moving average

(dy) =37.15+0.01

average over

3200 circuits

5 example
circuits

(d) =29.51+0.10 (d)=27.20 = 0.07

P o.’....:oo o

(ng) =97.86 +0.33

(n)=106.23 +0.40

(n)=97.86+0.33

200 400 600 800
epoch

1000 O

100 200 300 400 500 600
transformation round

1 epoch = 32 episodes



change in gate count n

change in gate count n

+30%

Performance

+0% -

—30% %,

“# " RL agent

—60%
+30%
+0% -
_30% 4 ¥
., .
1 ** - annealing
oo 1 (in 200k rounds)

—60% —-30% 0% +30%

change in depth d

RL (after |-week
training):
2 min per circuit

works for
arbitrary circuits!

Simulated annealing:
|-3 d per circuit



Large-scale Random Circuits
(same agent, now applied to larger circuit)
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Convolutional network permits successful
transfer of learned behaviour to much larger
circuits: local environment of gates is relevant!

simulated annealing: ~ | week, comparable to full
training time for general RL agent (that runs in 3-5 h)



Application to a real algorithm o ®
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Example:
Quantum Approximate Optimization Algorithm (QAOA)
— specifically, for the MaxCut problem

X(Bc)
Y4
° I T . (Yc) =
.. l : logical
y l T = circuit

v I 1 m
MaxCut " forc=1 C
graph 0 0T

P ] &P ]
| - compiled
o ‘ ‘ -  circuit

QAOA: Farhi et al, 2014
Experimental MaxCut-QAOA (Google): Harrigan et al, 2021




MaxCut Circuit Optimization
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Future: Quantum Circuit Dataset

Algorithms Hardware

QAOA, Shor, gate set,
Variational Quantum connectivity, ...
Eigensolver, ...

+ parameters
(e.g. problem instance)

Compiled
Quantum Circuits

Training




Lecture Notes "Machine Learning for Quantum Devices"
arXiv 2101.01759 - SciPost Lecture Notes 2021

Current online lecture series "Advanced Machine Learning
for Physics, Science, and Artificial Scientific Discovery"
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work with Thomas Fosel, Petru
Tighineanu, and Talitha Weiss

work with Thomas Fosel,
Murphy Yuezhen Niu, and Li Li

arXiv 2103.07585
New: Several Postdoc positions available in

Reinforcement Learning applied to Quantum
Technologies

Physical Review X 031084 (2018)

- "Munich Quantum Valley" Initiative

(ask me, Florian.Marquardt@mpl.mpg.de;
deadline Nov 15)
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