Classical Machine Learning for Quantum Technologies

Florian Marquardt

Max Planck Institute for the Science of Light & Friedrich-Alexander-Universität, Erlangen/Germany Introduction: Neural Networks Overview: Machine Learning for Quantum Technologies Deep Reinforcement Learning

Two examples: Quantum Error Correction Quantum Circuit Optimization

"light bulb"

(Pictures: Wikimedia Commons)

"light bulb"

Artificial Neural Network

(Pictures: Wikimedia Commons)

2012: A deep neural network beats other approaches clearly, in the "ImageNet" competition

Pictures: image-net.org

I.2 million training pictures(annotated by humans)

since 2012: rapid proliferation of real-world applications of artificial neural networks

image labeling, translation, speech recognition, ...

since ~2016: more and more examples in physics

statistical physics, quantum many-body physics, dynamical systems, experimental data analysis,

• • •

input layer

linear superposition

$$z = w_1 y_1 + w_2 y_2 + b$$

2 apply nonlinear activation function y = f(z)

Training a neural network is a highly nonlinear and stochastic process (not well-understood theoretically)

Results depend on the quantity and quality of training data

It is no substitute for basic understanding

Interpretation requires care

Training a neural network is a highly nonlinear and stochastic process (not well-understood theoretically)

Results depend on the quantity and quality of training data

It is no substitute for basic understanding

Interpretation requires care

...but it **can** be useful and is fun! (much to explore)

Classical Machine Learning for Quantum Technology – a brief survey of an evolving field

Observations (measurements)

Interpretation which quantum state? which parameters of the model?

what to measure next? (adaptive)

how to control the quantum system? (feedback)

Observations (measurements)

Training: on simulations? on a real experiment? Interpretation which quantum state? which parameters of the model?

what to measure next? (adaptive)

> how to control the quantum system? (feedback)

Readout: time traces

(use recurrent neural networks, i.e. nets with memory) advantage: NN trained on real data learns all possible distortions and noise sources

Readout: time traces

E. Fleurin et al 2018 (s.c. qubit readout experiment)

Interpreting error syndromes

(surface code)

Interpreting error syndromes

(surface code)

Melko et al 2017, Jiang et al, Bayreuther and Beenakker, ...

Reconstruction of quantum states

measuring a quantum dot: deciding where to measure next

Natalia Ares group, 2018 & ...

Producing new experimental layouts

Quantum control and feedback

open-loop (no feedback) closed-loop (with feedback)

typicalstate preparation, unitary synthesis,tasks:state/subspace stabilization, feedbackcooling and initialization, quantumerror correction

Quantum control and feedback

traditional: numerical techniques like GRAPE

new machine-learning techniques:

model-free (implicitly learn model from behaviour) can easily include feedback

profit from computer science method development

Qubit control

Bukov et al PRX 2018 August, Hernandez-Lobato 2018 Niu et al 2019

one aspect of 'quantum machine learning': optimizing control parameters directly on a quantum device

Deep Reinforcement Learning

final level limited by teacher

"Reinforcement learning"

student/scientist (tries out things)

final level: unlimited (?)

AlphaGo 2017

Image: Wikipedia

observe state, pick action, get reward

RL-agent

RL-environment

Policy: $\pi_{\theta}(a_t|s_t)$ – probability to pick action a_t given observed state s_t at time t

Maximize expected "return" R : sum of rewards

$$\delta\theta_j = \frac{\partial}{\partial\theta_j} \bar{R} = \sum_t \mathbb{E} \left[R \frac{\partial}{\partial\theta_j} \ln \pi_\theta(a_t | s_t) \right]$$

"Policy gradient", "REINFORCE" (Williams 1992)

Today: **deep** reinforcement learning with deep neural networks: high-dimensional states and actions

Reinforcement learning: Advantages

Discover **Feedback** Strategies (beyond GRAPE etc.)

No feedback: A^N strategies (A #actions N #steps) With feedback: A^{M^N} strategies (M #msmt outcomes)

Model-free

No need to develop/fit/calibrate model/equations for dynamics of the world/the device

... can learn on real devices, with all imperfections

Reinforcement learning: Advantages

RL with deep neural networks: Handle **arbitrary observations**

(images, videos, measurement results of any kind, sentences, graphs, quantum states, quantum circuits...)

Reinforcement learning: Challenges

Need to see **many evolutions**! tens of thousands

Cannot discover 'isolated/rare-event' strategies (also true for any other non-domain-specific algorithm)

Discovering Quantum Error Correction Strategies

work with **Thomas Fösel, Petru Tighineanu, and Talitha Weiss**

Physical Review X 031084 (2018)

Quantum Error Correction: many approaches

temporal correlations of noise

spatial correlations of noise

Quantum Error Correction: many approaches

temporal correlations of noise

spatial correlations of noise

Goal: protect a small quantum module against noise

RL-agent RL-environment

try out actions, get reward, improve strategy, ...

RL-agent

RL-environment

example: 4 qubits, measurements possible on all, CNOTs between all, bit-flip noise on all

$$\dot{\hat{\rho}} = \frac{1}{T_{\text{dec}}} \sum_{j} (\hat{\sigma}_{xj} \hat{\rho} \hat{\sigma}_{xj} - \hat{\rho})$$

Physical Review X 031084 (2018)

500 2500 22500 training epoch (simulation run)

adap

Physical Review X 031084 (2018)

0

Different topologies

Physical Review X 031084 (2018)

Different class of scenarios: Dephasing by a noisy field

Network discovers **adaptive** noise estimation strategy Strategy = decision tree

Two key concepts to make it work

Construct smart reward ("Recoverable Quantum Information")

As much information as possible & two-stage learning

Physical Review X 031084 (2018)

unrealistically powerful network

simpler, realistic network

quantum state measurement results

"Two-stage learning"

main advantage: flexibility – applicable to many other physical settings

cavities

(Schoelkopf, Devoret lab 2016)

ion trap chips

(Monroe, Kim Science 2013)

Currently: First steps towards deep reinforcement learning on experimental platforms

example: optimizing control pulses for supercond. q. proc. (state for agent = quantum state tomography)

Baum et al. 2021

Quantum Circuit Optimization

work with Thomas Fösel, Murphy Yuezhen Niu, and Li Li (Google Research) arXiv 2103.07585

Quantum Circuit Optimization: reduce gate count / depth / etc. !

NISQ devices: Quantum Circuit Optimization critical ...and needs to be hardware-dependent [not on an abstract level designed for large-scale fault-tolerant circuits]

Transformation rules

Deep reinforcement learning approach

hardware-efficient, cross-platform, autonomous, reliable

Choices: States, Agent, Actions, Rewards

Choices: States, Agent, Actions, Rewards

Technique: Advantage Actor Critic (namely: PPO)

Choices: States, Agent, Actions, Rewards

Choices: States, Agent, Actions, Rewards

Reward: reduction in gate count, depth, or combination (possibly: gate-dependent, decoherence estimate, ...)

Training on Random Circuits

Training on Random Circuits: Progress

1 epoch = 32 episodes

Performance

RL (after I-week 2 min per circuit works for arbitrary circuits!

Simulated annealing: I-3 d per circuit

Large-scale Random Circuits (same agent, now applied to larger circuit)

Convolutional network permits successful transfer of learned behaviour to much larger circuits: local environment of gates is relevant!

simulated annealing: ~ I week, comparable to full training time for general RL agent (that runs in 3-5 h)

Application to a real algorithm

Example:

Quantum Approximate Optimization Algorithm (QAOA) – specifically, for the MaxCut problem

QAOA: Farhi et al, 2014 Experimental MaxCut-QAOA (Google): Harrigan et al, 2021

MaxCut Circuit Optimization

before optimization (d = 75, n = 142)

optimized by agent trained on random circuits (d = 68, n = 138)

optimized by specialized agent (d = 66, n = 138)

Future: Quantum Circuit Dataset

Algorithms QAOA, Shor, Variational Quantum Eigensolver, ...

+ parameters(e.g. problem instance)

Hardware gate set, connectivity, ...

> Compiled Quantum Circuits

> > Training

Lecture Notes "Machine Learning for Quantum Devices" arXiv 2101.01759 - SciPost Lecture Notes 2021

Current online lecture series "Advanced Machine Learning for Physics, Science, and Artificial Scientific Discovery"

Discovering Quantum Error Correction Strategies

Quantum Circuit Optimization

work with **Thomas Fösel, Petru Tighineanu, and Talitha Weiss Physical Review X 031084 (2018)** work with Thomas Fösel, Murphy Yuezhen Niu, and Li Li arXiv 2103.07585

New: Several Postdoc positions available in Reinforcement Learning applied to Quantum Technologies

 - "Munich Quantum Valley" Initiative (ask me, <u>Florian.Marquardt@mpl.mpg.de</u>; deadline Nov 15)