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Artificial Neural Network



1.2 million training pictures 
(annotated by humans)

2012: A deep neural network beats other 
approaches clearly, in the “ImageNet” competition

Pictures: image-net.org



since 2012: rapid proliferation of real-world 
applications of artificial neural networks

image labeling, translation, speech recognition, ...



since ~2016: more and more examples in physics

statistical physics, quantum many-body physics, 
dynamical systems, experimental data analysis, 
…

“paramagnetic” “ferromagnetic”
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linear superposition

apply nonlinear activation function
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Training: adapt weights to come closer to 
correct input/output relation, based on 

thousands of training examples



Training: adapt weights to come closer to 
correct input/output relation, based on 

thousands of training examples



Training: adapt weights to come closer to 
correct input/output relation, based on 

thousands of training examples



Training: adapt weights to come closer to 
correct input/output relation, based on 

thousands of training examples



Machine learning is not a magic bullet!!



Training a neural network is a highly nonlinear and 
stochastic process   (not well-understood theoretically)

Results depend on the quantity and quality of training data

It is no substitute for basic understanding

Interpretation requires care

! Machine learning is not a magic bullet!



Training a neural network is a highly nonlinear and 
stochastic process   (not well-understood theoretically)

Results depend on the quantity and quality of training data

It is no substitute for basic understanding

Interpretation requires care

…but it can be useful and is fun!

(much to explore)

! Machine learning is not a magic bullet!
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Classical Machine Learning

for Quantum Technology

image: Chou et al. Nature 2018

– a brief survey of an

evolving field



Observations 
(measurements) Interpretation

what to measure next? 
(adaptive)

which quantum state? 
which parameters of 
the model?

how to control the

quantum system?


(feedback)



Observations 
(measurements) Interpretation

what to measure next? 
(adaptive)

which quantum state? 
which parameters of 
the model?

how to control the

quantum system?


(feedback)

Training: 
on simulations? 

on a real experiment?



Readout: time traces

NN

"1" "0"

(use recurrent neural networks, i.e. nets with memory)

time

advantage: NN trained on real data learns 
all possible distortions and noise sources



Readout: time traces

E. Fleurin et al 2018 (s.c. qubit readout experiment)



Interpreting error syndromes

(surface code)



Interpreting error syndromes

NN

(surface code)

Melko et al 2017, Jiang et al, Bayreuther and Beenakker, … 



Adaptive measurements

Measurement

controller

choice of msmt basis

1

0

1

1
0

0

B. Sanders group 2010-now

'
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with NN: e.g. Quek et al 2021
(particle swarm)



Reconstruction of quantum states

Statistics

NN

("Boltzmann

machine")

trainreproduce

measurements

(represents

many-body state)

e.g. Torlai et al 2019



Calibration/tuning/learning Hamiltonians

Ĥ =?
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Calibration/tuning/learning Hamiltonians

Ĥ =?
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Calibration/tuning/learning Hamiltonians

measuring a quantum dot: 

deciding where to measure next

Natalia Ares group, 2018 & …



Calibration/tuning/learning Hamiltonians

controller

Wang, Paesani, 
Santagati et al

(Thompson group 
Bristol) 2017



Producing new experimental layouts

A CB D

Fig. 3. Experimental setups frequently used by the PS agent. (A) Local
parity sorter. (B) Nonlocal parity sorter (as discovered by the program).
(C) Nonlocal parity sorter in the Klyshko wave front picture (53), in which
the paths a and d are identical to the paths b and c, respectively. (D) Setup to
increase dimensionality of photons. (A–D) In a simulation of 100 agents, the
highest-weighted subsetups were 11 times experiment A, 22 times experi-
ment B, and 43 times experiment D was part of the highest-weighted sub-
setup. Only in 24 cases were other subsetups the highest weighted.

experiments designed by the basic PS agent (solid blue curve)
and the PS agent with action composition (19) (dashed blue
curve). Action composition allows the agent to construct new
composite actions from useful optical setups (i.e., placing mul-
tiple elements in a fixed configuration), thereby autonomously
enhancing the toolbox (see Projective Simulation for details). It is
a central ingredient for an AI to exhibit even a primitive notion of
creativity (50) and was also used in ref. 12 to augment automated
random search. For comparison, we provide the total number of
interesting experiments obtained by automated random search
with and without action composition (Fig. 2B, solid and dashed
red curves). As we will see later, action composition will allow
for additional insight into the agent’s behavior and helps provide
useful information about quantum optical setups in general. We
found that the PS model discovers significantly more interesting
experiments than both automated random search and automated
random search with action composition (Fig. 2B).

Ingredients for Successful Learning. In general, successful learning
relies on a structure hidden in the task environment (or dataset).
The results presented thus far show that PS is highly successful

CBA

Fig. 4. Exploration space of optical setups. Different setups are represented by vertices with colors specifying an associated SRV [biseparable states are
depicted in blue]. Arrows represent the placing of optical elements. (A) A randomly generated space of optical setups. Here we allow up to 6 elements
on the optical table and a standard toolbox of 30 elements. Large, colored vertices represent interesting experiments. If two nodes share a color, they can
generate a state with the same SRV. Running for 1.6 ⇥ 104 experiments, the graph that is shown here has 45,605 nodes, of which 67 represent interesting
setups. (B) A part of graph A, which demonstrates the nontrivial structure of the network of optical setups. (C) A detailed view of one part of the bigger
network. The depicted colored maze represents an analogy between the task of finding the shortest implementation of an experiment and the task of
navigating in a maze (10, 41, 48, 49). Arrows of different colors represent distinct optical elements that are placed in the experiment. The initial state is
represented by an empty table ?. The shortest path to a setup that produces a state with SRV (3, 3, 2) and (3, 3, 3) is highlighted. Labels along this path
coincide with the labels of the percept clips in Fig. 1B.

in the task of designing new interesting experiments, and here we
elucidate why this should be the case. The following analysis also
sheds light on other settings where we can be confident that RL
techniques can be applied as well.

First, the space of optical setups can be illustrated using a
graph as given in Fig. 4C, where the building of an optical exper-
iment corresponds to a walk on the directed graph. Note that
optical setups that create a certain state are not unique: Two or
more different setups can generate the same quantum state. Due
to this fact, this graph does not have a tree structure but rather
resembles a maze. Navigating in a maze, in turn, constitutes
one of the classic textbook RL problems (10, 41, 48, 49). Sec-
ond, our empirical analysis suggests that experiments generating
high-dimensional multipartite entanglement tend to have some
structural similarities (12) (Fig. 4 A and B partially displays
the exploration space). Fig. 4 shows regions where the den-
sity of interesting experiments (large colored nodes) is high and
others where it is low—interesting experiments seem to be clus-
tered (Fig. S2). In turn, RL is particularly useful when one
needs to handle situations which are similar to those previously
encountered—once one maze (optical experiment) is learned,
similar mazes (experiments) are tackled more easily, as we have
seen before. In other words, whenever the experimental task has
a maze-type underlying structure, which is often the case, PS can
likely help—and critically, without having any a priori informa-
tion about the structure itself (41, 51). In fact, PS gathers infor-
mation about the underlying structure throughout the learning
process. This information can then be extracted by an external
user or potentially be used further by the agent itself.

The Potential of Learning from Experiments. Thus far, we have
established that a machine can indeed design new quantum
experiments in the setting where the task is precisely specified
(via the rewarding rule). Intuitively, this could be considered the
limit of what a machine can do for us, as machines are speci-
fied by our programs. However, this falls short from what, for
instance, a human researcher can achieve. How could we, even
in principle, design a machine to do something (interesting) we
have not specified it to do? To develop an intuition for the type
of behavior we could hope for, consider, for the moment, what
we may expect a human, say a good PhD student, would do in
situations similar to those studied thus far.

1224 | www.pnas.org/cgi/doi/10.1073/pnas.1714936115 Melnikov et al.

combine optical

elements to produce

highly entangled states

Briegel group

Melnikov et al

PNAS 2018

Krenn et al  
2016



Quantum control and feedback

closed-loopopen-loop
(with feedback)

state preparation, unitary synthesis, 
state/subspace stabilization, feedback 
cooling and initialization, quantum 
error correction

(no feedback)

typical 
tasks:



traditional: numerical techniques like GRAPE

new machine-learning techniques:
model-free (implicitly learn model from behaviour)
can easily include feedback
profit from computer science method development

Quantum control and feedback
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FIG. 1: (a) Phase diagram of the quantum state prepa-
ration problem for the qubit in Eq. (1) vs. protocol du-
ration T , as determined by the order parameter q(T )
(red) and the maximum possible achievable fidelity Fh(T )
(blue), compared to the variational fidelity Fh(T ) (black,
dashed). Increasing the total protocol time T , we go
from an overconstrained phase I, through a glassy phase
II, to a controllable phase III. (b) Left: the infidelity
landscape is shown schematically (green). Right: the
optimal bang-bang protocol found by the RL agent at
the points (i)–(iii) (red) and the variational protocol [35]

(blue, dashed).

paradigm of multi-starting local gradient optimizers [47].
Unlike these methods, the RL agent progressively learns
to build a model of the optimization landscape in such
a way that the protocols it finds are stable to sampling
noise. In this regard, RL-based approaches are particu-
larly well-suited to work with experimental data [48, 49]
and, unlike many optimal control methods, they do not
require explicit knowledge of local gradients of the con-
trol landscape [35, 45]. This o↵ers a considerable advan-

tage in controlling realistic systems where constructing a
reliable e↵ective model is infeasible, for example due to
disorder or dislocations.
To manipulate the quantum system, our computer

agent constructs piecewise-constant protocols of dura-
tion T by choosing a drive protocol strength hx(t) at
each time t = n�t, n = {0, 1, · · · , T/�t}, with �t the
time-step size. In order to make the agent learn, it is
given a reward for every protocol it constructs – the fi-
delity Fh(T ) = |h ⇤| (T )i|2 for being in the target state
after time T following the protocol hx(t) under unitary

Schrödinger evolution. The goal of the agent is to max-
imize the reward in a series of attempts. Deprived of
any knowledge about the underlying physical model, the
agent collects information about already tried protocols,
based on which it constructs new, improved protocols
through a sophisticated biased sampling algorithm [35].
In realistic applications, one does not have access to in-
finite control fields; for this reason, we restrict to fields
hx(t) 2 [�4, 4], see Fig. 1b. Pontryagin’s maximum prin-
ciple further allows us to focus on bang-bang protocols
(Fig. 1b, red), where hx(t) 2 {±4}, although we verified
that RL also works for quasi-continuous protocols with
many di↵erent steps �hx [35]. Even though there is only
one control field, the space of available protocols grows
exponentially with the inverse step size �t�1.

Control Phases of Constrained Qubit Manipulation.—
To benchmark the application of RL to physics problems,
consider first a two-level system described by

H(t) = �S
z � hx(t)S

x
, (1)

where S
↵, are the spin-1/2 operators. This Hamil-

tonian comprises both integrable many-body and non-
interacting translational invariant systems, such as the
transverse-field Ising model, graphene and topological in-
sulators. The initial | ii and target | ⇤i states are chosen
as the ground states of (1) at hx = �2 and hx = 2, re-
spectively. Although there exists an analytical solution to
solve for the optimal protocol in this case [46], it does not
generalize to non-integrable many-body systems. Thus,
studying this problem using RL serves a two-fold pur-
pose: (i) we benchmark the protocols obtained by the
RL agent demonstrating that, even though RL is a com-
pletely model-free algorithm, it still finds the physically
meaningful solutions by constructing a minimalistic e↵ec-
tive model on-the-fly. The learning process is shown in
this Movie; (ii) We reveal an important novel perspective
on the complexity of quantum state preparation which,
as we show below, generalizes to many-particle systems.

For fixed total ramp time T , the infidelity hx(t) 7!
Ih(T ) = 1 � Fh(T ) represents a “potential landscape”,
the global minimum of which corresponds to the opti-
mal driving protocol. For bang-bang protocols, the prob-
lem of finding the optimal protocol becomes equivalent
to finding the ground state configuration of a classical
Ising model with complicated interactions. We map out
the landscape of local infidelity minima {h↵

x
(t)} using

SD, starting from random bang-bang protocol configu-

time

Qubit control

Bukov et al PRX 2018 
August, Hernandez-Lobato 2018


Niu et al 2019 
…

Quantum control



optimizing control parameters 
directly on a quantum device
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e.g. Azpuru-Guzik group 2018

one aspect of 'quantum machine learning':

Quantum control



Deep 
Reinforcement 
Learning



teacher

(smart)

student

(imitates teacher)

“Supervised learning”

final level limited by teacher

!
!

(most neural network applications)



student/scientist

(tries out things)

“Reinforcement learning”

?

?

?

final level: unlimited (?)



AlphaGo 2017
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observation

RL-environmentRL-agent

action

“policy”
state    action

Policy: ⇡✓(at|st) – probability to pick action
given observed state 

at
st

at time t

observe state, pick action, get reward



RMaximize expected “return” : sum of rewards

�✓j =
@

@✓j
R̄ =

X

t

E

R

@

@✓j
ln⇡✓(at|st)

�

“Policy gradient”, “REINFORCE” (Williams 1992)

Today: deep reinforcement learning

with deep neural networks: high-dimensional 
states and actions



Reinforcement learning: Advantages

Discover Feedback Strategies
(beyond GRAPE etc.)

No feedback:   strategies (A #actions N #steps)AN

With feedback:   strategies (M #msmt outcomes)AMN

Model-free

No need to develop/fit/calibrate model/equations for 
dynamics of the world/the device

…can learn on real devices, with all imperfections



RL with deep neural networks: 
Handle arbitrary observations

Need to see many evolutions!

(images, videos, measurement results of any kind, 
sentences, graphs, quantum states, quantum circuits…)

Reinforcement learning: Challenges

tens of thousands

Cannot discover 'isolated/rare-event' strategies
(also true for any other non-domain-specific algorithm)

Reinforcement learning: Advantages



Discovering

Quantum Error

Correction

Strategies

work with Thomas Fösel, Petru Tighineanu, and 
Talitha Weiss

Physical Review X 031084 (2018)
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Quantum Error Correction: many approaches
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Quantum Error Correction: many approaches

dynamical

decoupling


stabilizer codes


adaptive noise

estimation


decoherence-free

subspaces


reinforcement 

learning for 

quantum 

feedback




noise

qubits

Goal: protect a small quantum module against noise



noise
measurement

qubits

RL-environment

neural

network

RL-agent

action (gate)

try out actions, get reward, improve strategy, …



| (0)i
noise

qubits

CNOT

CNOT

measure

Initialize qubit here: ↵ |0i+ � |1i| (0)i =

CNOT



measurement

RL-environment

neural

network

RL-agent

action (gate)

example: 4 qubits, measurements possible on 
all, CNOTs between all, bit-flip noise on all

˙̂⇢ =
1

Tdec

X

j

(�̂xj ⇢̂�̂xj � ⇢̂)



time-step

after 60 epochs

after 160 epochs

converged

(natural policy gradient)

finds repetition code 
encoding sequence

avoids catastrophic 
measurements

discovers parity 
detections
applies them 
periodically

The network...

Physical Review X 031084 (2018)



Training Progress

Physical Review X 031084 (2018)

measure of success=

"recoverable quantum information"

RQ

training epoch (simulation run)
0 500 2500 22500
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non-adaptive detection

only encoding

adaptive
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Physical Review X 031084 (2018)



1
2
3 MX MXMY MY

MX

MY

MY

MY3

MX3

MY2

MY3

MY2

MX2

MX2

MY2

MY MX MXMY

MX3 MY3

Network discovers adaptive noise estimation strategy
Strategy = decision tree

Different class of scenarios: Dephasing by a noisy field



Two key concepts to make it work

As much information as possible &

two-stage learning

Construct smart reward

Physical Review X 031084 (2018)

("Recoverable Quantum Information")



measurement results

teach

simpler, realistic 
network

⇢̂

quantum state


“Two-stage learning”

unrealistically

powerful network



(Monroe, Kim Science 2013)


main advantage: flexibility
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FIG. 1. Sketch (not to scale) of device ar-
chitecture and experimental protocol. (A)
A three dimensional schematic of the device con-
sisting of two coaxial cavities (Alice and Bob), a
Y-shaped transmon with a single Josephson junc-
tion (marked by “⇥”), and a stripline readout res-
onator. All components are housed inside a single
piece of bulk high-purity aluminum, with artifi-
cial windows drawn for illustration purposes. (B)
A top view of the same device, showing the rela-
tive position of the sapphire chip, center posts of
the coaxial cavities, transmon antenna, and the
readout resonator. (C) The microwave control
sequences for generating the two-mode cat state
and performing Wigner tomography. D� repre-
sents cavity displacement by �, and a superscript
g is added if the displacement is conditional on
the ancilla being in |gi. Rge

✓ or Ref
✓ represents

ancilla rotation by angle ✓ (around an axis in the
X-Y plane) in the |gi-|ei Bloch sphere or |ei-|fi
Bloch sphere. R00

⇡ is an ancilla |gi-|ei rotation
conditional on the cavities being in |0iA|0iB . C�

represents cavity phase shift of � conditional on
the ancilla being in an excited state. By choos-
ing �i + �0

i = ⇡ or 2⇡, we can measure photon
number parity of Alice (PA), Bob (PB), or the
two combined (PJ), to perform Wigner tomog-
raphy of individual cavities or the joint Wigner
tomography.

control is further manifested by the presence of entangle-
ment exceeding classical bounds in a CHSH-style inequality
for two continuous-variable systems14. Finally, our two-
cavity space e↵ectively encodes two coupled logical qubits
in the coherent state basis, and we present e�cient two-
qubit tomography in this encoded space.
Our experimental setup uses a three-dimensional (3D)

circuit QED architecture15, where two high-Q 3D cavities
and a quasi-planar readout resonator simultaneously couple
to a fixed-frequency transmon-type superconducting qubit
(Fig. 1A,B)16. The two cavities that host the cat state of
microwave photons are implementations of the longest-lived
quantum memory in circuit QED to date17. The transmon,
while usually considered a qubit, behaves as an artificial
atom with multiple energy levels. We use the transmon as
an ancilla to manipulate the multi-photon states in the two
cavities, and its lowest three levels, |gi, |ei and |fi, are ac-
cessed in this experiment. The device is cooled down to 20
mK in a dilution refrigerator, and microwave transmission
through the readout resonator is used to projectively mea-
sure the ancilla state with a heterodyne detection at room
temperature after multiple stages of amplification.
We consider the Hamiltonian of the system including two

harmonic cavity modes, a three-level atom, and their dis-
persive interaction (with parameters listed in Table I):

H/~ =!Aa
†
a+ !Bb

†
b+ !ge|eihe|+ (!ge + !ef )|fihf |

� �
ge
A a

†
a|eihe|� (�ge

A + �
ef
A )a†a|fihf |

� �
ge
B b

†
b|eihe|� (�ge

B + �
ef
B )b†b|fihf | (3)

where !A and !B are the angular frequencies of the two
cavities (Alice and Bob), !ge and !ef are the |ei ! |gi and
|fi ! |ei transition frequencies of the ancilla, �ge

i and �
ef
i

(i = A or B) represent the dispersive frequency shifts of
cavity i associated with the two ancilla transitions. The
readout resonator and small high-order nonlinearities are
neglected for simplicity. Using time-dependent external
classical drives in the form of microwave pulses, we can per-
form arbitrary ancilla rotations in both |gi-|ei and |ei-|fi
manifolds, and arbitrary cavity state displacements in Alice
(D�A = e

�Aa†��⇤
Aa) and Bob (D�B = e

�Bb†��⇤
Bb) indepen-

dently. More importantly, the state-dependent frequency
shifts (�’s) allow cavity state manipulations conditioned
on the ancilla level or vice versa using spectrally-selective
control pulses, thus realizing atom-photon quantum logic
gates5. It can be further shown that with separate drives on
the two cavities and a drive on the ancilla, this Hamiltonian

!/2⇡ T1 T ⇤
2

Cavities: Alice 4.2196612 GHz 2.2-3.3 ms 0.8-1.1 ms
Bob 5.4467679 GHz 1.2-1.7 ms 0.6-0.8 ms

Transmon: |ei ! |gi 4.87805 GHz 65-75 µs 30-45 µs
(Ancilla) |fi ! |ei 4.76288 GHz 28-32 µs 12-24 µs

�/2⇡ Alice Bob

�ge 0.71 MHz 1.41 MHz
�ef 1.54 MHz 0.93 MHz

TABLE I. Hamiltonian parameters and coherence times of the
two storage cavities and the transmon ancilla, including tran-
sition frequencies (!/2⇡), dispersive shifts between each cavity
and each transmon transition (�), energy relaxation time (T1),
and Ramsey decoherence time (T ⇤

2 ). The cavity frequencies are
given with a precision of ±100 Hz and are stable over the course
of several months.

(Schoelkopf, Devoret lab 2016)
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Figure 4. Extrapolation to 50-qubit random circuits. The
agent has been trained on 12-qubit circuits (cmp. Fig. 3), no
further learning updates are performed here. (a) shows the
comparison between an unoptimized example circuit (after
pruning) and the result of the optimization by the RL agent.
(b) shows the progress of the agent in reducing depth d and gate
count n over the course of 2500 transformations. (c) shows the
corresponding curves for simulated annealing, which requires
almost 100000 transformations to achieve a comparable degree
of optimization (the computation was terminated after 1 week,
at transformation 93000).

two quantities is comparable to the smaller circuits it has
been trained on (cmp. Fig. 3).
Simulated annealing arrives at similar values, hdi =

112.72 ± 0.24 and hni = 1583.0 ± 7.3, within 93000
transformations. These are much fewer transformations
than required to optimize the smaller random circuits in
Sec. IIIA, probably because here the random expansion
step has been skipped. Nevertheless, 93000 transforma-
tions for each larger random circuits here have already
taken one week (our termination criterion), which is com-
parable to the time needed to train an RL agent. Af-
terwards, this agent can optimize arbitrary circuits, in a
relatively short time (3 . . . 5 h in this case).
Our results show that an agent can actually extrapo-

late its knowledge to larger circuits. More generally, they
demonstrate that our approach, both with RL and simu-
lated annealing, works deep in the quantum supremacy
regime. Furthermore, this also highlights a situation
where optimizing even a single circuit with simulated an-
nealing needs already a runtime comparable to the full
training of an RL agent and subsequently optimizing the
particular circuit.

Figure 5. Optimization of QAOA-MaxCut circuits. (a)
indicates how to translate the MaxCut problem for a graph
into a quantum circuit following QAOA, and how to e�ciently
compile this logical circuit into our gate set. We display one
of M cycles which form the full circuit, each with a di↵erent
set of parameters (�c,�c) whose values are refined during the
QAOA algorithm. (b) shows the compiled circuit for C = 2
cycles and an all-to-all-connected graph with 6 nodes, which
has depth d = 75 and gate count n = 142 (top). Using a
generic agent trained on random circuits as in Fig. 3, we find
(by postselection) improved circuits with d = 68 and n = 138
(middle). A specialized agent trained on this particular circuit
can further optimize it to d = 66 and n = 138 (bottom).

C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would

(Google Research)
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therefore does not rely on a teacher, it often achieves
super-human performance in situations where such a com-
parison can be made.

In recent years, RL has also been proposed for several
problems in the field of quantum computing. Examples
include quantum phase estimation [28], the design of quan-
tum experiments [29], quantum control [30–33], quantum
error correction [34–37] (alongside other machine learning
approaches [38–41]), and quantum metrology [42, 43].

In this work, we introduce deep reinforcement learning
for quantum circuit optimization. Our approach enables
the computer to autonomously discover strategies for
reducing the depth and gate count of quantum circuits,
for arbitrary gate sets and connectivity. It allows to choose
the optimization target at will and permits extrapolation
of the discovered strategy to larger circuits. Due to its
flexibility and generality, the RL approach proposed here
has the potential to become a valuable component of the
toolbox needed to unlock the power of NISQ devices in
the near future.

II. TECHNIQUE

A. Quantum circuit optimization as reinforcement
learning problem

The goal of RL is to discover strategies for decision-
making problems. This is described by an “agent” inter-
acting with the rest of the world, the “environment”. In
several rounds, the agent receives information from the
environment and, in response to this observation, chooses
an action which alters the state of the environment. The
agent is supposed to adapt its strategy so as to maximize
a success measure, the “reward”. More information is
provided in Sec. II C.
In the spirit of previous RL applications to quantum

problems [28, 30–34, 42, 43], the obvious approach seems
to let the agent build a circuit gate by gate to implement
a certain target operation. However, this would come
with two central problems here. First, it is extremely un-
likely to find a suitable circuit by chance, so an untrained
agent would in practice probably never see a positive
reward signal. This problem is exacerbated by the fact
that the gate set is typically not discrete, but gates can
depend on continuous parameters. Second, in the par-
ticularly interesting quantum supremacy regime where
the circuit cannot be simulated on a classical computer,
there is the problem that even if one had found a valid
circuit, verifying its correctness would be very hard and
computationally expensive. Note that some tools like ZX
calculus promise to arrive at a statement in polynomial
time, but with the two possible results being positive or
inconclusive whether two circuits are equivalent.
Therefore, we follow a di↵erent strategy that appears

more promising: In QCO, it is common to start from a
complete and correct, but typically ine�cient circuit, and
to progressively optimize it by applying a sequence of

a

b

c

Figure 1. Overview. a) Diagram representation for quantum
circuits. Each qubit is indicated with one line. The colored
symbols represent operations (gates) on these qubits, with
time increasing to the right. b) Quantum circuit optimiza-
tion. For a given circuit, we aim to find a logically equivalent,
but more e�cient representation. c) Our reinforcement learn-
ing approach to quantum circuit optimization. Based on a
diagram-like representation of the circuit, the agent, realized
by a neural network, can choose between several circuit trans-
formations to generate another, logically equivalent circuit;
this process is repeated multiple times.

circuit transformations. However, it can be a formidable
challenge to appropriately choose these transformations,
and we make this decision the task of our agent. From the
RL perspective, this means that the states are the circuits
and the actions are the circuit transformations. By design,
this approach immediately solves the challenge to finish
with a correct, i. e., logically equivalent, circuit: we can
preserve this property for the full process by allowing in
each step only equivalence transformations. In addition,
our approach is also scalable, i. e., it allows us to operate
in the quantum supremacy regime: it is su�cient to verify
equivalence for the few operations directly involved in
an elementary circuit transformation, which is relatively
cheap as long as all operations act only on a limited
number of qubits.

Our general goal is to use RL to train a multi-purpose
agent which afterwards will be able to optimize a wide
class of circuits based on one given hardware architecture,
without going through the RL procedure again in each

Quantum Circuit Optimization: 
reduce gate count / depth / etc. !
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Figure 4. Extrapolation to 50-qubit random circuits. The
agent has been trained on 12-qubit circuits (cmp. Fig. 3), no
further learning updates are performed here. (a) shows the
comparison between an unoptimized example circuit (after
pruning) and the result of the optimization by the RL agent.
(b) shows the progress of the agent in reducing depth d and gate
count n over the course of 2500 transformations. (c) shows the
corresponding curves for simulated annealing, which requires
almost 100000 transformations to achieve a comparable degree
of optimization (the computation was terminated after 1 week,
at transformation 93000).

two quantities is comparable to the smaller circuits it has
been trained on (cmp. Fig. 3).
Simulated annealing arrives at similar values, hdi =

112.72 ± 0.24 and hni = 1583.0 ± 7.3, within 93000
transformations. These are much fewer transformations
than required to optimize the smaller random circuits in
Sec. IIIA, probably because here the random expansion
step has been skipped. Nevertheless, 93000 transforma-
tions for each larger random circuits here have already
taken one week (our termination criterion), which is com-
parable to the time needed to train an RL agent. Af-
terwards, this agent can optimize arbitrary circuits, in a
relatively short time (3 . . . 5 h in this case).
Our results show that an agent can actually extrapo-

late its knowledge to larger circuits. More generally, they
demonstrate that our approach, both with RL and simu-
lated annealing, works deep in the quantum supremacy
regime. Furthermore, this also highlights a situation
where optimizing even a single circuit with simulated an-
nealing needs already a runtime comparable to the full
training of an RL agent and subsequently optimizing the
particular circuit.

Figure 5. Optimization of QAOA-MaxCut circuits. (a)
indicates how to translate the MaxCut problem for a graph
into a quantum circuit following QAOA, and how to e�ciently
compile this logical circuit into our gate set. We display one
of M cycles which form the full circuit, each with a di↵erent
set of parameters (�c,�c) whose values are refined during the
QAOA algorithm. (b) shows the compiled circuit for C = 2
cycles and an all-to-all-connected graph with 6 nodes, which
has depth d = 75 and gate count n = 142 (top). Using a
generic agent trained on random circuits as in Fig. 3, we find
(by postselection) improved circuits with d = 68 and n = 138
(middle). A specialized agent trained on this particular circuit
can further optimize it to d = 66 and n = 138 (bottom).

C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would

NISQ devices: Quantum Circuit Optimization critical 
…and needs to be hardware-dependent 
[not on an abstract level designed for large-scale 
fault-tolerant circuits]
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Figure 2. Deep convolutional network architecture of our RL agent. As observation, the agent receives a complete description
of the state s, i. e., the quantum circuit. The input neurons are arranged on a 3D grid, whose axes correspond to qubit index,
moment and gate class. This information is processed through a stack of multiple convolutional layers, where qubit index and
moment are treated as spatial dimensions and the gate classes as input color channels. For the output, the agent computes two
quantities: (i) The policy ⇡(s|a), according to which the actions a in state s are probabilistically chosen. Every action, i. e.,
circuit transformation, is mapped uniquely to one policy output neuron; the remaining neurons are disabled with an action
mask. And (ii), the state value V (s), which helps to update the policy ⇡(s|a) more e�ciently during training. For us, V (s) has
the meaning of the optimization potential for the circuit.

indicate the underlying rule, we can achieve an injective
mapping from transformations to output neurons (for the
policy). Therefore, also these neurons are arranged on a
3D grid, whose axes correspond to qubit index, moment
and transformation rule. There can be neurons to which
no transformation is associated; we disable them with an
action mask, whose value changes with the input circuit.
Besides solving the problem to keep the total number

of output neurons at a moderate level, another central
advantage of this format is that we can exclusively use con-
volutional layers [45] to process the observation into the
policy, treating qubit and moment as spatial dimensions,
and the remaining grid axis (gate class and transforma-
tion rule, respectively) as input “color” channels. Also
to compute the state value, we use convolutional layers
(with one output channel), and eventually average over
the spatial dimensions. Fig. 2 illustrates the architecture
of our deep convolutional network. The weight sharing in
the convolutional layers contributes to e�cient and robust
learning, and a fully convolutional architecture will allow
us to directly extrapolate to di↵erent circuit sizes (see
Sec. III B).

F. RL problem classification

The RL problem in this article can be classified as a
Markov decision process (MDP) with perfect information
(since the circuit representation, which is given to the
agent as its input, completely describes the state of the
environment). The set of all circuits comprises the state
space. The set of possible circuit transformations repre-

sent the action space, which is therefore discrete, and its
size depends on the state, i. e., the circuit. The environ-
ment is deterministic: a fixed transformation (action) on
a fixed circuit (state) always leads to the same outcome.
Because the goal is to optimize a property which can be
evaluated for any single given circuit, we can construct
an immediate reward scheme (as opposed to situations
where the reward is given only at the end of an episode).

III. RESULTS

In exploring the power of our RL approach, we need
to select both a specific architecture (available gate set,
processor layout, qubit connectivity) as well as the family
of quantum circuits on whose optimization we want to
focus.
Gate set For our simulations, we consider the gate set
consisting of Z-Rotation, Phased-X and Controlled-Not
(CNOT) gates. Together, they form a universal gate
set. Whereas Z-Rotation and Phased-X are actually gate
classes parameterized by 1 and 2 continuous variables,
respectively, the CNOT is one fixed gate.

For our purposes, Z-Rotation, Phased-X and CNOT is a
decent gate set because on the one hand, it induces a rich
set of relatively simple transformation rules. On the other
hand, they are quite similar to current real-world quan-
tum hardware, such as Google’s Bristlecone (Z-Rotation,
Phased-X and Controlled-Z gate [46]) and Sycamore
(Z-Rotation, Phased-X and fermionic simulation gate
[9, 47, 48]) processor: The CNOT gate di↵ers from the
Controlled-Z gate only by local gates (e. g., Hadamard or

Transformation rules
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therefore does not rely on a teacher, it often achieves
super-human performance in situations where such a com-
parison can be made.

In recent years, RL has also been proposed for several
problems in the field of quantum computing. Examples
include quantum phase estimation [28], the design of quan-
tum experiments [29], quantum control [30–33], quantum
error correction [34–37] (alongside other machine learning
approaches [38–41]), and quantum metrology [42, 43].

In this work, we introduce deep reinforcement learning
for quantum circuit optimization. Our approach enables
the computer to autonomously discover strategies for
reducing the depth and gate count of quantum circuits,
for arbitrary gate sets and connectivity. It allows to choose
the optimization target at will and permits extrapolation
of the discovered strategy to larger circuits. Due to its
flexibility and generality, the RL approach proposed here
has the potential to become a valuable component of the
toolbox needed to unlock the power of NISQ devices in
the near future.

II. TECHNIQUE

A. Quantum circuit optimization as reinforcement
learning problem

The goal of RL is to discover strategies for decision-
making problems. This is described by an “agent” inter-
acting with the rest of the world, the “environment”. In
several rounds, the agent receives information from the
environment and, in response to this observation, chooses
an action which alters the state of the environment. The
agent is supposed to adapt its strategy so as to maximize
a success measure, the “reward”. More information is
provided in Sec. II C.
In the spirit of previous RL applications to quantum

problems [28, 30–34, 42, 43], the obvious approach seems
to let the agent build a circuit gate by gate to implement
a certain target operation. However, this would come
with two central problems here. First, it is extremely un-
likely to find a suitable circuit by chance, so an untrained
agent would in practice probably never see a positive
reward signal. This problem is exacerbated by the fact
that the gate set is typically not discrete, but gates can
depend on continuous parameters. Second, in the par-
ticularly interesting quantum supremacy regime where
the circuit cannot be simulated on a classical computer,
there is the problem that even if one had found a valid
circuit, verifying its correctness would be very hard and
computationally expensive. Note that some tools like ZX
calculus promise to arrive at a statement in polynomial
time, but with the two possible results being positive or
inconclusive whether two circuits are equivalent.
Therefore, we follow a di↵erent strategy that appears

more promising: In QCO, it is common to start from a
complete and correct, but typically ine�cient circuit, and
to progressively optimize it by applying a sequence of

a

circuit
optimization

original circuit
equivalent, more
e�cient circuit

agentenvironment

circuit representation
observation

circuit transformation

action

b

c

Figure 1. Overview. a) Diagram representation for quantum
circuits. Each qubit is indicated with one line. The colored
symbols represent operations (gates) on these qubits, with
time increasing to the right. b) Quantum circuit optimiza-
tion. For a given circuit, we aim to find a logically equivalent,
but more e�cient representation. c) Our reinforcement learn-
ing approach to quantum circuit optimization. Based on a
diagram-like representation of the circuit, the agent, realized
by a neural network, can choose between several circuit trans-
formations to generate another, logically equivalent circuit;
this process is repeated multiple times.

circuit transformations. However, it can be a formidable
challenge to appropriately choose these transformations,
and we make this decision the task of our agent. From the
RL perspective, this means that the states are the circuits
and the actions are the circuit transformations. By design,
this approach immediately solves the challenge to finish
with a correct, i. e., logically equivalent, circuit: we can
preserve this property for the full process by allowing in
each step only equivalence transformations. In addition,
our approach is also scalable, i. e., it allows us to operate
in the quantum supremacy regime: it is su�cient to verify
equivalence for the few operations directly involved in
an elementary circuit transformation, which is relatively
cheap as long as all operations act only on a limited
number of qubits.

Our general goal is to use RL to train a multi-purpose
agent which afterwards will be able to optimize a wide
class of circuits based on one given hardware architecture,
without going through the RL procedure again in each

Deep reinforcement learning approach

hardware-efficient, cross-platform, autonomous, reliable
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Figure 2. Deep convolutional network architecture of our RL agent. As observation, the agent receives a complete description
of the state s, i. e., the quantum circuit. The input neurons are arranged on a 3D grid, whose axes correspond to qubit index,
moment and gate class. This information is processed through a stack of multiple convolutional layers, where qubit index and
moment are treated as spatial dimensions and the gate classes as input color channels. For the output, the agent computes two
quantities: (i) The policy ⇡(s|a), according to which the actions a in state s are probabilistically chosen. Every action, i. e.,
circuit transformation, is mapped uniquely to one policy output neuron; the remaining neurons are disabled with an action
mask. And (ii), the state value V (s), which helps to update the policy ⇡(s|a) more e�ciently during training. For us, V (s) has
the meaning of the optimization potential for the circuit.

indicate the underlying rule, we can achieve an injective
mapping from transformations to output neurons (for the
policy). Therefore, also these neurons are arranged on a
3D grid, whose axes correspond to qubit index, moment
and transformation rule. There can be neurons to which
no transformation is associated; we disable them with an
action mask, whose value changes with the input circuit.
Besides solving the problem to keep the total number

of output neurons at a moderate level, another central
advantage of this format is that we can exclusively use con-
volutional layers [45] to process the observation into the
policy, treating qubit and moment as spatial dimensions,
and the remaining grid axis (gate class and transforma-
tion rule, respectively) as input “color” channels. Also
to compute the state value, we use convolutional layers
(with one output channel), and eventually average over
the spatial dimensions. Fig. 2 illustrates the architecture
of our deep convolutional network. The weight sharing in
the convolutional layers contributes to e�cient and robust
learning, and a fully convolutional architecture will allow
us to directly extrapolate to di↵erent circuit sizes (see
Sec. III B).

F. RL problem classification

The RL problem in this article can be classified as a
Markov decision process (MDP) with perfect information
(since the circuit representation, which is given to the
agent as its input, completely describes the state of the
environment). The set of all circuits comprises the state
space. The set of possible circuit transformations repre-

sent the action space, which is therefore discrete, and its
size depends on the state, i. e., the circuit. The environ-
ment is deterministic: a fixed transformation (action) on
a fixed circuit (state) always leads to the same outcome.
Because the goal is to optimize a property which can be
evaluated for any single given circuit, we can construct
an immediate reward scheme (as opposed to situations
where the reward is given only at the end of an episode).

III. RESULTS

In exploring the power of our RL approach, we need
to select both a specific architecture (available gate set,
processor layout, qubit connectivity) as well as the family
of quantum circuits on whose optimization we want to
focus.
Gate set For our simulations, we consider the gate set
consisting of Z-Rotation, Phased-X and Controlled-Not
(CNOT) gates. Together, they form a universal gate
set. Whereas Z-Rotation and Phased-X are actually gate
classes parameterized by 1 and 2 continuous variables,
respectively, the CNOT is one fixed gate.

For our purposes, Z-Rotation, Phased-X and CNOT is a
decent gate set because on the one hand, it induces a rich
set of relatively simple transformation rules. On the other
hand, they are quite similar to current real-world quan-
tum hardware, such as Google’s Bristlecone (Z-Rotation,
Phased-X and Controlled-Z gate [46]) and Sycamore
(Z-Rotation, Phased-X and fermionic simulation gate
[9, 47, 48]) processor: The CNOT gate di↵ers from the
Controlled-Z gate only by local gates (e. g., Hadamard or

Choices: States, Agent, Actions, Rewards



5

momentqubit
index

gate
class

10

observation for circuit=state s
agent=

convolutional neural network

channel
index

moment

qubit
index

momentqubit
index

transformation rule

policy ⇡(a|s)
P

state value V (s)

Figure 2. Deep convolutional network architecture of our RL agent. As observation, the agent receives a complete description
of the state s, i. e., the quantum circuit. The input neurons are arranged on a 3D grid, whose axes correspond to qubit index,
moment and gate class. This information is processed through a stack of multiple convolutional layers, where qubit index and
moment are treated as spatial dimensions and the gate classes as input color channels. For the output, the agent computes two
quantities: (i) The policy ⇡(s|a), according to which the actions a in state s are probabilistically chosen. Every action, i. e.,
circuit transformation, is mapped uniquely to one policy output neuron; the remaining neurons are disabled with an action
mask. And (ii), the state value V (s), which helps to update the policy ⇡(s|a) more e�ciently during training. For us, V (s) has
the meaning of the optimization potential for the circuit.

indicate the underlying rule, we can achieve an injective
mapping from transformations to output neurons (for the
policy). Therefore, also these neurons are arranged on a
3D grid, whose axes correspond to qubit index, moment
and transformation rule. There can be neurons to which
no transformation is associated; we disable them with an
action mask, whose value changes with the input circuit.
Besides solving the problem to keep the total number

of output neurons at a moderate level, another central
advantage of this format is that we can exclusively use con-
volutional layers [45] to process the observation into the
policy, treating qubit and moment as spatial dimensions,
and the remaining grid axis (gate class and transforma-
tion rule, respectively) as input “color” channels. Also
to compute the state value, we use convolutional layers
(with one output channel), and eventually average over
the spatial dimensions. Fig. 2 illustrates the architecture
of our deep convolutional network. The weight sharing in
the convolutional layers contributes to e�cient and robust
learning, and a fully convolutional architecture will allow
us to directly extrapolate to di↵erent circuit sizes (see
Sec. III B).

F. RL problem classification

The RL problem in this article can be classified as a
Markov decision process (MDP) with perfect information
(since the circuit representation, which is given to the
agent as its input, completely describes the state of the
environment). The set of all circuits comprises the state
space. The set of possible circuit transformations repre-

sent the action space, which is therefore discrete, and its
size depends on the state, i. e., the circuit. The environ-
ment is deterministic: a fixed transformation (action) on
a fixed circuit (state) always leads to the same outcome.
Because the goal is to optimize a property which can be
evaluated for any single given circuit, we can construct
an immediate reward scheme (as opposed to situations
where the reward is given only at the end of an episode).

III. RESULTS

In exploring the power of our RL approach, we need
to select both a specific architecture (available gate set,
processor layout, qubit connectivity) as well as the family
of quantum circuits on whose optimization we want to
focus.
Gate set For our simulations, we consider the gate set
consisting of Z-Rotation, Phased-X and Controlled-Not
(CNOT) gates. Together, they form a universal gate
set. Whereas Z-Rotation and Phased-X are actually gate
classes parameterized by 1 and 2 continuous variables,
respectively, the CNOT is one fixed gate.

For our purposes, Z-Rotation, Phased-X and CNOT is a
decent gate set because on the one hand, it induces a rich
set of relatively simple transformation rules. On the other
hand, they are quite similar to current real-world quan-
tum hardware, such as Google’s Bristlecone (Z-Rotation,
Phased-X and Controlled-Z gate [46]) and Sycamore
(Z-Rotation, Phased-X and fermionic simulation gate
[9, 47, 48]) processor: The CNOT gate di↵ers from the
Controlled-Z gate only by local gates (e. g., Hadamard or

Choices: States, Agent, Actions, Rewards

Technique: Advantage Actor Critic (namely: PPO)
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Figure 2. Deep convolutional network architecture of our RL agent. As observation, the agent receives a complete description
of the state s, i. e., the quantum circuit. The input neurons are arranged on a 3D grid, whose axes correspond to qubit index,
moment and gate class. This information is processed through a stack of multiple convolutional layers, where qubit index and
moment are treated as spatial dimensions and the gate classes as input color channels. For the output, the agent computes two
quantities: (i) The policy ⇡(s|a), according to which the actions a in state s are probabilistically chosen. Every action, i. e.,
circuit transformation, is mapped uniquely to one policy output neuron; the remaining neurons are disabled with an action
mask. And (ii), the state value V (s), which helps to update the policy ⇡(s|a) more e�ciently during training. For us, V (s) has
the meaning of the optimization potential for the circuit.

indicate the underlying rule, we can achieve an injective
mapping from transformations to output neurons (for the
policy). Therefore, also these neurons are arranged on a
3D grid, whose axes correspond to qubit index, moment
and transformation rule. There can be neurons to which
no transformation is associated; we disable them with an
action mask, whose value changes with the input circuit.
Besides solving the problem to keep the total number

of output neurons at a moderate level, another central
advantage of this format is that we can exclusively use con-
volutional layers [45] to process the observation into the
policy, treating qubit and moment as spatial dimensions,
and the remaining grid axis (gate class and transforma-
tion rule, respectively) as input “color” channels. Also
to compute the state value, we use convolutional layers
(with one output channel), and eventually average over
the spatial dimensions. Fig. 2 illustrates the architecture
of our deep convolutional network. The weight sharing in
the convolutional layers contributes to e�cient and robust
learning, and a fully convolutional architecture will allow
us to directly extrapolate to di↵erent circuit sizes (see
Sec. III B).

F. RL problem classification

The RL problem in this article can be classified as a
Markov decision process (MDP) with perfect information
(since the circuit representation, which is given to the
agent as its input, completely describes the state of the
environment). The set of all circuits comprises the state
space. The set of possible circuit transformations repre-

sent the action space, which is therefore discrete, and its
size depends on the state, i. e., the circuit. The environ-
ment is deterministic: a fixed transformation (action) on
a fixed circuit (state) always leads to the same outcome.
Because the goal is to optimize a property which can be
evaluated for any single given circuit, we can construct
an immediate reward scheme (as opposed to situations
where the reward is given only at the end of an episode).

III. RESULTS

In exploring the power of our RL approach, we need
to select both a specific architecture (available gate set,
processor layout, qubit connectivity) as well as the family
of quantum circuits on whose optimization we want to
focus.
Gate set For our simulations, we consider the gate set
consisting of Z-Rotation, Phased-X and Controlled-Not
(CNOT) gates. Together, they form a universal gate
set. Whereas Z-Rotation and Phased-X are actually gate
classes parameterized by 1 and 2 continuous variables,
respectively, the CNOT is one fixed gate.

For our purposes, Z-Rotation, Phased-X and CNOT is a
decent gate set because on the one hand, it induces a rich
set of relatively simple transformation rules. On the other
hand, they are quite similar to current real-world quan-
tum hardware, such as Google’s Bristlecone (Z-Rotation,
Phased-X and Controlled-Z gate [46]) and Sycamore
(Z-Rotation, Phased-X and fermionic simulation gate
[9, 47, 48]) processor: The CNOT gate di↵ers from the
Controlled-Z gate only by local gates (e. g., Hadamard or

Choices: States, Agent, Actions, Rewards
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Figure 2. Deep convolutional network architecture of our RL agent. As observation, the agent receives a complete description
of the state s, i. e., the quantum circuit. The input neurons are arranged on a 3D grid, whose axes correspond to qubit index,
moment and gate class. This information is processed through a stack of multiple convolutional layers, where qubit index and
moment are treated as spatial dimensions and the gate classes as input color channels. For the output, the agent computes two
quantities: (i) The policy ⇡(s|a), according to which the actions a in state s are probabilistically chosen. Every action, i. e.,
circuit transformation, is mapped uniquely to one policy output neuron; the remaining neurons are disabled with an action
mask. And (ii), the state value V (s), which helps to update the policy ⇡(s|a) more e�ciently during training. For us, V (s) has
the meaning of the optimization potential for the circuit.

indicate the underlying rule, we can achieve an injective
mapping from transformations to output neurons (for the
policy). Therefore, also these neurons are arranged on a
3D grid, whose axes correspond to qubit index, moment
and transformation rule. There can be neurons to which
no transformation is associated; we disable them with an
action mask, whose value changes with the input circuit.
Besides solving the problem to keep the total number

of output neurons at a moderate level, another central
advantage of this format is that we can exclusively use con-
volutional layers [45] to process the observation into the
policy, treating qubit and moment as spatial dimensions,
and the remaining grid axis (gate class and transforma-
tion rule, respectively) as input “color” channels. Also
to compute the state value, we use convolutional layers
(with one output channel), and eventually average over
the spatial dimensions. Fig. 2 illustrates the architecture
of our deep convolutional network. The weight sharing in
the convolutional layers contributes to e�cient and robust
learning, and a fully convolutional architecture will allow
us to directly extrapolate to di↵erent circuit sizes (see
Sec. III B).

F. RL problem classification

The RL problem in this article can be classified as a
Markov decision process (MDP) with perfect information
(since the circuit representation, which is given to the
agent as its input, completely describes the state of the
environment). The set of all circuits comprises the state
space. The set of possible circuit transformations repre-

sent the action space, which is therefore discrete, and its
size depends on the state, i. e., the circuit. The environ-
ment is deterministic: a fixed transformation (action) on
a fixed circuit (state) always leads to the same outcome.
Because the goal is to optimize a property which can be
evaluated for any single given circuit, we can construct
an immediate reward scheme (as opposed to situations
where the reward is given only at the end of an episode).

III. RESULTS

In exploring the power of our RL approach, we need
to select both a specific architecture (available gate set,
processor layout, qubit connectivity) as well as the family
of quantum circuits on whose optimization we want to
focus.
Gate set For our simulations, we consider the gate set
consisting of Z-Rotation, Phased-X and Controlled-Not
(CNOT) gates. Together, they form a universal gate
set. Whereas Z-Rotation and Phased-X are actually gate
classes parameterized by 1 and 2 continuous variables,
respectively, the CNOT is one fixed gate.

For our purposes, Z-Rotation, Phased-X and CNOT is a
decent gate set because on the one hand, it induces a rich
set of relatively simple transformation rules. On the other
hand, they are quite similar to current real-world quan-
tum hardware, such as Google’s Bristlecone (Z-Rotation,
Phased-X and Controlled-Z gate [46]) and Sycamore
(Z-Rotation, Phased-X and fermionic simulation gate
[9, 47, 48]) processor: The CNOT gate di↵ers from the
Controlled-Z gate only by local gates (e. g., Hadamard or

Choices: States, Agent, Actions, Rewards

Reward: reduction in gate count, depth, or combination
(possibly: gate-dependent, decoherence estimate, …)
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Figure 3. Training on random circuits. a) Circuit processing pipeline (see Sec. IIIA for details). After choosing an initial
circuit by randomly combining gates, a pruning step follows where all “trivial” optimizations are applied. Afterwards, 500
random transformations are performed on this circuit, which turns out to significantly increase their depth d and gate count n.
These expanded circuits are then used as the starting point of the episodes to train and evaluate the RL agent. b) Diagrams
illustrating the evolution of one example circuit through this pipeline. c) Learning progress during training, demonstrating how
the agent improves in reducing both the depth d (top) and the gate count n (bottom) of the circuits. The point cloud indicates,
for all episodes during training, the corresponding quantity in the final time step. The blue curve shows the moving average over
the latest 10% of epochs. For comparison, the gray line indicates the corresponding averages after pruning; already early in the
training, the agent falls below this level for both quantities. d) In-game progress at the end of the learning process, showing
for 5 episodes during the last epoch (orange) how the agent progressively optimizes (d, n) during an episode. The blue curve
indicates the average over all episodes in the last 100 epochs of training. e) Relative improvement achieved by the RL agent, in
reference to the corresponding circuit size after pruning. Each point corresponds to one episode during the last 100 epochs.
f) Comparison with circuit optimization by simulated annealing (see Sec. IIIA for details). The graphical depiction and the
considered circuits are equivalent to (e), which makes them directly comparable.

knowledge in this situation.

For this purpose, we reuse the scheme to generate
random circuits as described in Sec. IIIA, except for
changing two parameters: we increase the number of
qubits from 12 to 50, and the number of initial gates
from 150 to 2500. We find hdi = 199.25 ± 0.08 and
hni = 2655.3±1.2 before pruning, and hdi = 156.67±0.07
and hni = 1940.2± 1.6 after pruning. Because we will not

use the circuits here to train the agent, we can skip the
step to expand them by random transformations, whose
purpose it was to feed to the agent also very ine�cient
circuits during training. Instead, the optimization by
the agent starts here directly from the pruned circuits.
As shown in Fig. 4b, the agent achieves to reduce hdi
to 110.84 ± 0.07 and hni to 1616.3 ± 2.0 within 2500
transformations. Remarkably, the reduction ratio in these

Training on Random Circuits
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circuit by randomly combining gates, a pruning step follows where all “trivial” optimizations are applied. Afterwards, 500
random transformations are performed on this circuit, which turns out to significantly increase their depth d and gate count n.
These expanded circuits are then used as the starting point of the episodes to train and evaluate the RL agent. b) Diagrams
illustrating the evolution of one example circuit through this pipeline. c) Learning progress during training, demonstrating how
the agent improves in reducing both the depth d (top) and the gate count n (bottom) of the circuits. The point cloud indicates,
for all episodes during training, the corresponding quantity in the final time step. The blue curve shows the moving average over
the latest 10% of epochs. For comparison, the gray line indicates the corresponding averages after pruning; already early in the
training, the agent falls below this level for both quantities. d) In-game progress at the end of the learning process, showing
for 5 episodes during the last epoch (orange) how the agent progressively optimizes (d, n) during an episode. The blue curve
indicates the average over all episodes in the last 100 epochs of training. e) Relative improvement achieved by the RL agent, in
reference to the corresponding circuit size after pruning. Each point corresponds to one episode during the last 100 epochs.
f) Comparison with circuit optimization by simulated annealing (see Sec. IIIA for details). The graphical depiction and the
considered circuits are equivalent to (e), which makes them directly comparable.

knowledge in this situation.

For this purpose, we reuse the scheme to generate
random circuits as described in Sec. IIIA, except for
changing two parameters: we increase the number of
qubits from 12 to 50, and the number of initial gates
from 150 to 2500. We find hdi = 199.25 ± 0.08 and
hni = 2655.3±1.2 before pruning, and hdi = 156.67±0.07
and hni = 1940.2± 1.6 after pruning. Because we will not

use the circuits here to train the agent, we can skip the
step to expand them by random transformations, whose
purpose it was to feed to the agent also very ine�cient
circuits during training. Instead, the optimization by
the agent starts here directly from the pruned circuits.
As shown in Fig. 4b, the agent achieves to reduce hdi
to 110.84 ± 0.07 and hni to 1616.3 ± 2.0 within 2500
transformations. Remarkably, the reduction ratio in these

Training on Random Circuits: Progress
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Figure 3. Training on random circuits. a) Circuit processing pipeline (see Sec. IIIA for details). After choosing an initial
circuit by randomly combining gates, a pruning step follows where all “trivial” optimizations are applied. Afterwards, 500
random transformations are performed on this circuit, which turns out to significantly increase their depth d and gate count n.
These expanded circuits are then used as the starting point of the episodes to train and evaluate the RL agent. b) Diagrams
illustrating the evolution of one example circuit through this pipeline. c) Learning progress during training, demonstrating how
the agent improves in reducing both the depth d (top) and the gate count n (bottom) of the circuits. The point cloud indicates,
for all episodes during training, the corresponding quantity in the final time step. The blue curve shows the moving average over
the latest 10% of epochs. For comparison, the gray line indicates the corresponding averages after pruning; already early in the
training, the agent falls below this level for both quantities. d) In-game progress at the end of the learning process, showing
for 5 episodes during the last epoch (orange) how the agent progressively optimizes (d, n) during an episode. The blue curve
indicates the average over all episodes in the last 100 epochs of training. e) Relative improvement achieved by the RL agent, in
reference to the corresponding circuit size after pruning. Each point corresponds to one episode during the last 100 epochs.
f) Comparison with circuit optimization by simulated annealing (see Sec. IIIA for details). The graphical depiction and the
considered circuits are equivalent to (e), which makes them directly comparable.

knowledge in this situation.

For this purpose, we reuse the scheme to generate
random circuits as described in Sec. IIIA, except for
changing two parameters: we increase the number of
qubits from 12 to 50, and the number of initial gates
from 150 to 2500. We find hdi = 199.25 ± 0.08 and
hni = 2655.3±1.2 before pruning, and hdi = 156.67±0.07
and hni = 1940.2± 1.6 after pruning. Because we will not

use the circuits here to train the agent, we can skip the
step to expand them by random transformations, whose
purpose it was to feed to the agent also very ine�cient
circuits during training. Instead, the optimization by
the agent starts here directly from the pruned circuits.
As shown in Fig. 4b, the agent achieves to reduce hdi
to 110.84 ± 0.07 and hni to 1616.3 ± 2.0 within 2500
transformations. Remarkably, the reduction ratio in these
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Figure 4. Extrapolation to 50-qubit random circuits. The
agent has been trained on 12-qubit circuits (cmp. Fig. 3), no
further learning updates are performed here. (a) shows the
comparison between an unoptimized example circuit (after
pruning) and the result of the optimization by the RL agent.
(b) shows the progress of the agent in reducing depth d and gate
count n over the course of 2500 transformations. (c) shows the
corresponding curves for simulated annealing, which requires
almost 100000 transformations to achieve a comparable degree
of optimization (the computation was terminated after 1 week,
at transformation 93000).

two quantities is comparable to the smaller circuits it has
been trained on (cmp. Fig. 3).
Simulated annealing arrives at similar values, hdi =

112.72 ± 0.24 and hni = 1583.0 ± 7.3, within 93000
transformations. These are much fewer transformations
than required to optimize the smaller random circuits in
Sec. IIIA, probably because here the random expansion
step has been skipped. Nevertheless, 93000 transforma-
tions for each larger random circuits here have already
taken one week (our termination criterion), which is com-
parable to the time needed to train an RL agent. Af-
terwards, this agent can optimize arbitrary circuits, in a
relatively short time (3 . . . 5 h in this case).
Our results show that an agent can actually extrapo-

late its knowledge to larger circuits. More generally, they
demonstrate that our approach, both with RL and simu-
lated annealing, works deep in the quantum supremacy
regime. Furthermore, this also highlights a situation
where optimizing even a single circuit with simulated an-
nealing needs already a runtime comparable to the full
training of an RL agent and subsequently optimizing the
particular circuit.

Figure 5. Optimization of QAOA-MaxCut circuits. (a)
indicates how to translate the MaxCut problem for a graph
into a quantum circuit following QAOA, and how to e�ciently
compile this logical circuit into our gate set. We display one
of M cycles which form the full circuit, each with a di↵erent
set of parameters (�c,�c) whose values are refined during the
QAOA algorithm. (b) shows the compiled circuit for C = 2
cycles and an all-to-all-connected graph with 6 nodes, which
has depth d = 75 and gate count n = 142 (top). Using a
generic agent trained on random circuits as in Fig. 3, we find
(by postselection) improved circuits with d = 68 and n = 138
(middle). A specialized agent trained on this particular circuit
can further optimize it to d = 66 and n = 138 (bottom).

C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would

Large-scale Random Circuits
(same agent, now applied to larger circuit)

Convolutional network permits successful 
transfer of learned behaviour to much larger 
circuits: local environment of gates is relevant!

simulated annealing: ~ 1 week, comparable to full 
training time for general RL agent (that runs in 3-5 h)
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Figure 4. Extrapolation to 50-qubit random circuits. The
agent has been trained on 12-qubit circuits (cmp. Fig. 3), no
further learning updates are performed here. (a) shows the
comparison between an unoptimized example circuit (after
pruning) and the result of the optimization by the RL agent.
(b) shows the progress of the agent in reducing depth d and gate
count n over the course of 2500 transformations. (c) shows the
corresponding curves for simulated annealing, which requires
almost 100000 transformations to achieve a comparable degree
of optimization (the computation was terminated after 1 week,
at transformation 93000).

two quantities is comparable to the smaller circuits it has
been trained on (cmp. Fig. 3).
Simulated annealing arrives at similar values, hdi =

112.72 ± 0.24 and hni = 1583.0 ± 7.3, within 93000
transformations. These are much fewer transformations
than required to optimize the smaller random circuits in
Sec. IIIA, probably because here the random expansion
step has been skipped. Nevertheless, 93000 transforma-
tions for each larger random circuits here have already
taken one week (our termination criterion), which is com-
parable to the time needed to train an RL agent. Af-
terwards, this agent can optimize arbitrary circuits, in a
relatively short time (3 . . . 5 h in this case).
Our results show that an agent can actually extrapo-

late its knowledge to larger circuits. More generally, they
demonstrate that our approach, both with RL and simu-
lated annealing, works deep in the quantum supremacy
regime. Furthermore, this also highlights a situation
where optimizing even a single circuit with simulated an-
nealing needs already a runtime comparable to the full
training of an RL agent and subsequently optimizing the
particular circuit.
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Figure 5. Optimization of QAOA-MaxCut circuits. (a)
indicates how to translate the MaxCut problem for a graph
into a quantum circuit following QAOA, and how to e�ciently
compile this logical circuit into our gate set. We display one
of M cycles which form the full circuit, each with a di↵erent
set of parameters (�c,�c) whose values are refined during the
QAOA algorithm. (b) shows the compiled circuit for C = 2
cycles and an all-to-all-connected graph with 6 nodes, which
has depth d = 75 and gate count n = 142 (top). Using a
generic agent trained on random circuits as in Fig. 3, we find
(by postselection) improved circuits with d = 68 and n = 138
(middle). A specialized agent trained on this particular circuit
can further optimize it to d = 66 and n = 138 (bottom).

C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would

Example:  
Quantum Approximate Optimization Algorithm (QAOA) 
– specifically, for the MaxCut problem
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Figure 4. Extrapolation to 50-qubit random circuits. The
agent has been trained on 12-qubit circuits (cmp. Fig. 3), no
further learning updates are performed here. (a) shows the
comparison between an unoptimized example circuit (after
pruning) and the result of the optimization by the RL agent.
(b) shows the progress of the agent in reducing depth d and gate
count n over the course of 2500 transformations. (c) shows the
corresponding curves for simulated annealing, which requires
almost 100000 transformations to achieve a comparable degree
of optimization (the computation was terminated after 1 week,
at transformation 93000).

two quantities is comparable to the smaller circuits it has
been trained on (cmp. Fig. 3).
Simulated annealing arrives at similar values, hdi =

112.72 ± 0.24 and hni = 1583.0 ± 7.3, within 93000
transformations. These are much fewer transformations
than required to optimize the smaller random circuits in
Sec. IIIA, probably because here the random expansion
step has been skipped. Nevertheless, 93000 transforma-
tions for each larger random circuits here have already
taken one week (our termination criterion), which is com-
parable to the time needed to train an RL agent. Af-
terwards, this agent can optimize arbitrary circuits, in a
relatively short time (3 . . . 5 h in this case).
Our results show that an agent can actually extrapo-

late its knowledge to larger circuits. More generally, they
demonstrate that our approach, both with RL and simu-
lated annealing, works deep in the quantum supremacy
regime. Furthermore, this also highlights a situation
where optimizing even a single circuit with simulated an-
nealing needs already a runtime comparable to the full
training of an RL agent and subsequently optimizing the
particular circuit.
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Figure 5. Optimization of QAOA-MaxCut circuits. (a)
indicates how to translate the MaxCut problem for a graph
into a quantum circuit following QAOA, and how to e�ciently
compile this logical circuit into our gate set. We display one
of M cycles which form the full circuit, each with a di↵erent
set of parameters (�c,�c) whose values are refined during the
QAOA algorithm. (b) shows the compiled circuit for C = 2
cycles and an all-to-all-connected graph with 6 nodes, which
has depth d = 75 and gate count n = 142 (top). Using a
generic agent trained on random circuits as in Fig. 3, we find
(by postselection) improved circuits with d = 68 and n = 138
(middle). A specialized agent trained on this particular circuit
can further optimize it to d = 66 and n = 138 (bottom).

C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would

MaxCut Circuit Optimization
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Figure 4. Extrapolation to 50-qubit random circuits. The
agent has been trained on 12-qubit circuits (cmp. Fig. 3), no
further learning updates are performed here. (a) shows the
comparison between an unoptimized example circuit (after
pruning) and the result of the optimization by the RL agent.
(b) shows the progress of the agent in reducing depth d and gate
count n over the course of 2500 transformations. (c) shows the
corresponding curves for simulated annealing, which requires
almost 100000 transformations to achieve a comparable degree
of optimization (the computation was terminated after 1 week,
at transformation 93000).

two quantities is comparable to the smaller circuits it has
been trained on (cmp. Fig. 3).
Simulated annealing arrives at similar values, hdi =

112.72 ± 0.24 and hni = 1583.0 ± 7.3, within 93000
transformations. These are much fewer transformations
than required to optimize the smaller random circuits in
Sec. IIIA, probably because here the random expansion
step has been skipped. Nevertheless, 93000 transforma-
tions for each larger random circuits here have already
taken one week (our termination criterion), which is com-
parable to the time needed to train an RL agent. Af-
terwards, this agent can optimize arbitrary circuits, in a
relatively short time (3 . . . 5 h in this case).
Our results show that an agent can actually extrapo-

late its knowledge to larger circuits. More generally, they
demonstrate that our approach, both with RL and simu-
lated annealing, works deep in the quantum supremacy
regime. Furthermore, this also highlights a situation
where optimizing even a single circuit with simulated an-
nealing needs already a runtime comparable to the full
training of an RL agent and subsequently optimizing the
particular circuit.

Figure 5. Optimization of QAOA-MaxCut circuits. (a)
indicates how to translate the MaxCut problem for a graph
into a quantum circuit following QAOA, and how to e�ciently
compile this logical circuit into our gate set. We display one
of M cycles which form the full circuit, each with a di↵erent
set of parameters (�c,�c) whose values are refined during the
QAOA algorithm. (b) shows the compiled circuit for C = 2
cycles and an all-to-all-connected graph with 6 nodes, which
has depth d = 75 and gate count n = 142 (top). Using a
generic agent trained on random circuits as in Fig. 3, we find
(by postselection) improved circuits with d = 68 and n = 138
(middle). A specialized agent trained on this particular circuit
can further optimize it to d = 66 and n = 138 (bottom).

C. QAOA-MaxCut circuit

As an example for a real-world quantum algorithm,
we now consider the MaxCut problem. The goal is to
arrange the nodes of an undirected, non-weighted graph
into two groups such that the amount of cut edges is
maximized. Finding the exact solution is an NP-hard
problem. Following the quantum approximate optimiza-
tion algorithm (QAOA [7]), approximate solutions can
be found with the help of a quantum circuit consisting
of repeated cycles of ZZ gates and local X rotations with
variable angles [48] (cmp. Fig. 5a). We consider the
same gate set as in the examples above, such that we can
reuse the previously trained agent. Also, this covers the
realistic situation where the native gates of the quantum
algorithm do not necessarily match the native gates of
the hardware. Fig. 5a shows an e�cient compilation of
this circuit into our gate set, where ZZ gates need to be
decomposed into CNOTs and local Z rotations (local X
rotations are a special case of Phased-X gates). Note
that the variable angles of the gates do not a↵ect the
optimization strategy, as long as we assume these angles
to be generic (i. e., not set to special values which would
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