Scale and conformal invariance

for cold atomic gases
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Scale invariance

A concept that was introduced in the 70’s in high energy physics

Can there be physical systems with no intrinsic energy/length scale?

Need to explain the behavior of e-- nucleon scattering cross-sections

This concept later found many applications in physics, maths, biology, etc.

Phase transitions and
renormalization group
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Scale invariance in a gas of particles

Consider a fluid whose equations of motion, i.e. its action [E dz , are invariant in the following rescaling:

Positions: r — r/A Time:  — t//l2
v
A ’ 3 Velocity: v — Av
v \ v A\ 7

Considerable simplification of the study of equilibrium properties and dynamics
Clearly Ey; — /12E1<in , Implying that J'Ekin dr is invariant

What about interactions? Can we achieve E.  — A*E. when r — r/l ?



(Gases with scale invariant interactions r—r/\ Fine — A2 B

The simplest case: the 1/r° potential V= Z %
r

i<j Y
Calogero-Moser-Sutherland model in 1D Efimov problem in 3D

For such a potential, there is no length scale associated to interactions

Reminder: for a power-law potential g/r", the relevant (quantum!) length scale £ is obtained by
equating kinetic and potential energy

72 g { Coulomb interaction (n = 1, g = e?): ¢ = Bohr radius h*/me?

1/4
Van der Waals interaction (n = 6, g = C¢): £ = van der Waals radius (mC6/h2)

No characteristic length £ forn = 2! 4



Cold atomic gases with scale invariant interactions

r—1r/A Eing — A Eing

-+ 3D spin 1/2 Fermi gas in the unitary regime: infinite scattering
length, hence no length scale associated to interactions

- Contact interaction in a 2D Bose gas:
r—r/A gé(r) = gd(r/\) =\ gd(r) \/

Valid only for relatively weak interactions, so that a classical field description (Gross-
Pitaevskii equation) is valid (otherwise, quantum anomaly from the regularisation of o(r) )



Classical field approach to the 2D Bose gas

Describe the gas by a classical field ¥ (r,t) obeying the Gross-Pitaevskii equation

Energy of the gas: E(v) = Fiin (V) + Ein (V)

hQ
Ekin(w) — %/‘VQMZ Eint(w) — —m?]/wrl

g : interaction strength

No singularity at the classical field level

In 3D, ¢ = 4ma where a is the scattering length

In 2D, the interaction strength ¢ is dimensionless: no length scale associated with interactions



Outline of the lecture

Time-independent problems

Universality of the equation of state
Solitons in 2D

The Efimov effect

Time-dependent problems
Conformal invariance and the SO(2,1) dynamical symmetry
The breathing mode

Breathers



Scale-invariant equation of state

For a “standard” cold 3D gas, the scattering length a brings the energy scale € = h’/ma”

kol
Exemple of an equation of state: nl’=% ( B F ) i.e., a 2-variable function

€ €

For a scale-invariant Fermi gas (a = 0 or a = 0), it must read = ( ) )

kyT
Considerable simplification (1-variable function) which leads to PV = EE T.L. Ho, 2004
Similarly fora 2D Bose gas: ni?=¢ ( % , 8 ) g dimensionless coupling
B

- PV=E



The equation of state of the 2D Bose gas nic =9 ( é , §>

Theory using a classical-field analysis: Prokof’'ev & Svistunov Measurements : Chicago, Paris, Cambridge

Smooth external trapping potential Vtmp(r) + local-density approximation: u(r) = u(0) — Vi, (1)

r
A single image gives access to the desired function & : n(r) =g ( /Z(T) )
B

15

Phase-space

All density profiles obtained for various atom numbers and
density n4°

various temperatures collapse on the same universal
curve (for a given interaction strength, here g = (.26)

10

from Hung et al, Nature 470, 236 (2011)




Outline of the lecture

Time-independent problems

=) Solitons in 2D
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Solitons for the Gross-Pitaevskii equation

Look for a stationary wave function y solution of the variational problem o [E(l//)] = ()
for an attractive non-linearity g < O

gt =5 [(190]" + & lw]*) @

Relevant in optics, atomic physics, condensed matter...

| | | _ E(? 1 N
Dimensional analysis for a wave packet of size ¢": ](V) ~ ;i‘

Crucial role of dimensionality D

11



Solitons in 1D, 2D, 3D

E(7) I Nig|

Wave packet of size £ in dimension D : ~
N L2 P
In 1D: Stable solution for any N and any ¢ In 3D: Dynamically unstable extremum

Size £« x 1/N .

E(?) ) 8] E(Z) Size 7+ x N|g]|

i f*
iIn the context of cold atoms: In the context of cold atoms:
Salomon and Hulet's groups (2002 BoseNova: Cornell-Wieman group (2001)

2D is a critical dimension: Stationary solutions can be obtained only for discrete values of N| g |



2D: the Townes soliton Ely :lj(\w\%g W) &

Chiao, Garmire & Townes, 1964

1
Radially symmetric, node-less solution of —Evzl// + oyl =y {\l/f\z S

Such a solution exists only if (Ng)T = —5.85...

OWIES

lthas E=0 and u <0 - | |

r [arb.un.]

Once a particular solution is known, scale invariance provides a continuous family of solutions

¢(r) = Ay(4r) py = A A real

No particular length scale for the Townes soliton when it exists

However: Instable with respect to a change in shape or in Ng
13



Observation of Townes soliton with cold atomic gases

One needs to achieve an effective attractive interaction ¢ < 0

Paris group:  Phys. Rev. Lett. 127, 023603 (2021), use of a two-component gas with 8’Rb
Purdue group: Phys. Rev. Lett. 127, 023604 (2021), use of a Feshbach resonance with 133Cs

Quench g: +0.13 - — 0.0215

and switch from 1D to 2D
Rescale all “droplets” together

Atom number/droplet: (Ng) = — 6.0 (8)

to be compared with (N2)1ownes = — 9.83...

from Chen & Hung, PRL 127, 023604 (2021)
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Outline of the lecture

Time-independent problems

=P The Efimov effect Efimov, 1970

Fonseca et al, 1979

We look here at the 3-body problem “Heavy + Heavy + Light”

. No direct interaction "Heavy-Heavy”

- Heavy-Light contact interaction with
scattering length a

Limit a — o0 : no two-body bound state “Heavy + Light”

15



m
Emergence of 1/R? potential between the heavy particles M ‘/N
M

Born-Oppenheimer approach: assume first the heavy particles fixed in = R/2

e—Klr—R/Zl e—K|r+R/2|

. Wave function for the light particle for th = — h**2m r) o |
ave function for the light particle for the energy ¢ hox/2m w(r) T _R2  TrER2]

> Bethe-Peierls boundary condition for each “Heavy-Light” contact interaction:

a(lf'l//) _ l (rl//) e—KR 1
or - a r=0 =~ . R 4
| o 0.57 h?
» When a — o0, the solution of kR = e ™" iskR ~ 0.57, hence k & and e(R) ~ —0.32

R 2mR?

Then, the energy £(R) of the ground state of the light particle plays the role of a potential energy for
the motion of the two heavy ones: attractive 1/R? potential 16



m
Bound states of the 3-body system M ‘/\
M

Motion of the heavy particles in the 1/R? potential created by the heavy-light resonant interaction
h’ 2 ] h?
V2¥(R) P(R) = EWY(R) =032 — We look for E < 0
M R? 2m

Scale invariance of g/R*: if ¥(R) is a solution for energy E, then ®(R) = WP(R/1) is solution for E/1?.

Continuous spectrum from £ = — o0 to £ =0 ?

Need to impose a lower bound £, for example by imposing a hard core in R = R,

—p» Breaks the continuous scale invariance

—> Keeps a discrete scale invariance: infinite sequence of bound states E, = E,/A*" where A depends on M/m

Lk E, E, Es E; O
| | | I
| | | T T - Energy




Outline of the lecture

Time-dependent problems
Conformal invariance and the SO(2,1) dynamical symmetry
The breathing mode

Breathers
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From scale to conformal invariance et & B o07

In addition to the standard Galilean transformations (translations, rotations), there exist 3 types
of transformations that leave the unitary 3D Fermi gas or the 2D Bose gas invariant:

Dilatations: r— 7/ t— t/\°
“ /
Time translations: r—r t—t+t L : \
v\ e AT
cc ' ., r t
Expansions’: r —s t —
vt + 1 vt + 1

3-parameter group: dynamical symmetry associated with the SO(2,1) two-dimensional Lorentz group

Can be extended to a harmonic trap, with a slight modification of the transformations

19



The SO(2,1) symmetry in a nutshell

~ 2
A p
Hin: / 1n — V
in =) 5 ¢ = Z
J Z#J
. 1

Define the three operators: < Lo

Commutation relations: [Li, Ls] = —iALs

(Lo, Ls] = ik, (L3, L]

(Hkm + Hmt _ [:—’pot)

1
ZZ T pj—l—p] )
J

1

2hw

(Hkin =+ Hint =+ Hpot)

Close to an angular momentum (SO(3)), but not quite

The invariant is here:

L:+ L5 — L3

— ihLo

(total Hamiltonian)



Linking various time-dependent solutions

scaling A(?)
\ ‘ '

Conformal invariance allows one to link the solution of the N-body Schrodinger equation in
a trap of frequency w,, to the solution in a trap with frequency w, for the same initial state.

(1)
\'\_//

@ may possibly depend on time, and even be zero (untrapped case)

| | | - . )
The scaling parameter A(?) is the solution of the Ermakov equation: 7 F o (1) A(2) = 0

Pitaevskii & Rosch, 1997; Kagan et al 1997; Castin & Dum 1997 ;
Castin & Werner, 2004-06 : Son et al, 2006-07; Nishida & Tan, 2008 : Gritsev et al, 2010

21



Outline of the lecture

Time-dependent problems

=== The breathing mode

Pitaevskil & Rosch, 1997

22



A smoking gun of SO(2,1) symmetry: The breathing mode

Prepare an arbitrary shape for the gas at ¢t =0

Let the atoms evolve in a 2D harmonic potential of frequency @ in the presence of interactions

Measure (rz) X (ﬁpot) after an evolution time 7 : Perfectly periodic evolution with frequency 2w

Direct consequence of the commutation relations, using Heisenberg picture:

Va\

) 1 /. . . A 1 o A H
Ly = 2hw (Hkin + Hing — Hpot) "2 = 1 EJ: (rj REARE .rj) = 2hw
di’l l AA -
dt h dzzl 2%
) > FQw) L, =0
dL2 l A A -~ dtz |

out-of-phase oscillation of £y, + E; and E

23



A smoking gun of SO(2,1) symmetry: The breathing mode

Prepare an arbitrary shape for the gas at ¢t =0

Let the atoms evolve in a 2D harmonic potential of frequency @ in the presence of interactions

Measure (r2) X (ﬁpot) after an evolution time 7 : Perfectly periodic evolution with frequency 2w

A 2D experiment: , 0.5/
(r(®))

[arb. un.] °?

0.3} )

1 > Saint-dalm et al,
— 0.2 -« Phys. Rev. X 9, 021035 (2019)

—_ 1 2 3 4 5 _ b
b - *

Oscillation at 2w

0% 50 40 60 80 100 120 t |ms]

—» |n 2D, the scale invariance holds only at the classical field level. What about quantum corrections?

——> Are there shapes that lead to a fully periodic motion (i.e. all moments (7"") are periodic) ? »



Olshanii, Perrin, Lorent PRL 105, 095302 (2010)

2
Quantum anomaly for <7’ >(t) Hofmann, PRL 108, 185303 (2012)

In 2D, the scale/conformal invariance holds only at the classical field level

The necessary regularization of the 5(2D)(rl- — rj) function for a quantum field treatment breaks this symmetry

Recent investigations wit a 2D Fermi gas close to the unitary point:

205 v | v | v | ' | v | ' | '
I 2.20 : -
o |1>-|2> Mixture
204 F / E o |1> - |3> Mixture |
203 F 2005~
ool 10 ) ] M. Holten et al,
——1. 3 )\ PRL 121, 120401 (2018)
g 63 € 3 201F [Jochim’s group, Heidelberg]
= I 20 2 |
560 A0 Vi o
£ o g 200 p-======~
S ? 19 ¢
= 57 O
.g (&) - -20% 199 B
O 54 In(k.a,)=1.95|] 40 '
[ : | . | . | . | . 1.98 : ' : ' : ' : ' : ' : ' :
200 220 240 260 280 300 -8 -6 -4 -2 0) 2 4 6
Hold time, t (ms) 4BEC In(k a_) BCSH

F—2D

see also 1. Peppler et al, PRL 121, 120402 (2018) [Vale’s group, Swinburne] 25



Outline of the lecture

Time-dependent problems

=== Breathers

Are there shapes that lead to a fully periodic motion at 2@ (i.e. all moments (") are periodic) ?

26



The equilateral triangle in the hydrodynamic (Vg > 1) regime

Saint-dalm et al,
Phys. Rev. X 9, 021035 (2019)

Experimentally, in a harmonic trap of frequency w:

it = ()

v

-

&

i

Hoi

t="T/4

&

¥

v

t T'/9

Numerically, solution of the Gross-Pitaevskii equation on a 1024x1024 grid:

v

¥

-

A

Initial state |y;): uniform filling of the triangle

.

b4

\ 4

Does not seem to occur for any other polygonal shape!

period 7/2 with T = 2x/w

Overlap with wave function at 7/2: [(t; |1 ¢)]| > 0.995

27



Do such breathers also show up for other 2D systems with SO(2,1) symmetry?

V(rid) = 2*V(r)

A simple test: Classical particles interacting with V() o —zpotential

Simulation with
4000 particles

v;(0) =0 N
t =20
1 = | |
%'\
\%\\\\
w BN
o0 \\\:t\\
g 0.9 - N \\\ -
= AN
:—Eé —— Nat=100000 |
08 40000 [N
= 20000
5 — 10000
£ 4000
g 07 —— 2000 7
11— 1000
| |
0 5.10"2 0.25 0.3 0.35

0.6 |-

0.4}

0.2

0.6 -

0.4

0.2 -

I

0.6 -

0.4

0.2




Two recent theoretical insights

Shi, Gao & Zhai, Phys. Rev. X 11 041031 (2021): “ldeal-Gas Approach to Hydrodynamics”

“There exist situations that the solution to a class of interacting hydrodynamic equations with certain
initial conditions can be exactly constructed from the dynamics of noninteracting ideal gases”

In the proof, scale invariance appears as a necessary, but not sufficient, condition

Specific shapes : the overlap area of two homothetic equilateral triangles is always of the same shape

3D tetrahedron: YES

Olshanii et al, SciPost Phys. 10, 114 (2021): “Triangular Gross-Pitaevskii breathers and Damski-Chandrasekhar shock waves”

The shock wave created by the initial density jump does not induce further catastrophes in the hydrodynamic equations



Summary

Conformal invariance: example of a dynamical (or hidden) symmetry y 7y
v \ 7 N \ 4

Transformations that leaves the equations of motion invariant

Valid either at the quantum-field level (3D unitary gas) or at the classical-field level (2D Bose gas)

In the latter case, provides an example of a quantum anomaly in low-energy physics

A situation valid in any dimension: the 1/ r* interaction potential

Can this potential be simulated for a many-body quantum gas,
besides the now well-understood Efimov effect?

30



Thank you!



Breaking the SO(2,1) symmetry with a quantum anomaly

Hammer & Son (2004): Going beyond the classical field analysis based on the Gross-Pitaevskii energy functional

Introduction of a short-distance (i.e. UV) cutoff at r ~ R, 4w (van der Waals length : nanometer size)

—> There exists a stable solution of size o, for any value of the atom number N

—9
ONn ~ 3 C1020 ~ 10 ) 01000
Gog0 ~ 10™ 61000

Geometric scaling:

ON+1

In practice, for an interaction strength | g | << 1, the predicted value
for oy is physically reasonable only for | N — Ny, wnes | ~ @ few units

— In the strongly interacting case | g | ~ 1, a realistic droplet size would be achieved
with only a few atoms and one could observe the predicted scaling of 6, with N

32



