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Written in the stars
“Some say the world will end in fire; 
Some say in ice…”*

What is the fate of the Universe? Probably it will end in ice if we are to believe this year’s Nobel Laureates. 
They have carefully studied several dozen exploding stars, called supernovae, in faraway galaxies and 
have concluded that the expansion of the Universe is speeding up. 

The discovery came as a complete surprise even to the Nobel Laureates themselves. What they saw would be 
like throwing a ball up in the air, and instead of having it come back down, watching as it disappears more 
and more rapidly into the sky, as if gravity could not manage to reverse the ball’s trajectory. Something simi-
lar seemed to be happening across the entire Universe.

The growing rate of the expansion implies that the Universe is being pushed apart by an unknown form of 
energy embedded in the fabric of space. This dark energy makes up a large part of the Universe, more than 
70 %, and it is an enigma, perhaps the greatest in physics today. No wonder, then, that cosmology was shaken 
at its foundations when two different research groups presented similar results in 1998.

Saul Perlmutter headed one of the two research teams, the Supernova Cosmology Project, initiated a decade 
earlier in 1988. Brian Schmidt headed another team of scientists, which towards the end of 1994 launched 
a competing project, the High-z Supernova Search Team, in which Adam Riess was to play a crucial role.
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Figure 1. The world is growing. The expansion of the Universe began with the Big Bang 14 billion years ago, but slowed down during the 
first several billion years. Eventually it started to accelerate. The acceleration is believed to be driven by dark energy, which in the begin-
ning constituted only a small part of the Universe. But as matter got diluted by the expansion, the dark energy became more dominant.
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Trees grow tall where resources are abundant, stresses are minor,
and competition for light places a premium on height growth1,2.
The height to which trees can grow and the biophysical determi-
nants of maximum height are poorly understood. Some models
predict heights of up to 120m in the absence of mechanical
damage3,4, but there are historical accounts of taller trees5.
Current hypotheses of height limitation focus on increasing
water transport constraints in taller trees and the resulting
reductions in leaf photosynthesis6. We studied redwoods
(Sequoia sempervirens), including the tallest known tree on
Earth (112.7m), in wet temperate forests of northern California.
Our regression analyses of height gradients in leaf functional
characteristics estimate a maximum tree height of 122–130m
barring mechanical damage, similar to the tallest recorded trees
of the past. As trees grow taller, increasing leaf water stress due to
gravity and path length resistance may ultimately limit leaf
expansion and photosynthesis for further height growth, even
with ample soil moisture.

According to the cohesion-tension theory, water transport in
plants occurs along a gradient of negative pressure (tension) in the
dead, tube-like cells of the xylem, with transpiration, water adhesion
to cell walls, and surface tension providing the forces necessary to
lift water against gravity7. Height growth may slow if the xylem
tension and therefore leaf water potential (W) predicted for great
heights,&22MPa (ref. 7), reduces sufficiently the positive pressure
(turgor) necessary for expansion of living cells or increases the risk
of xylem cavitation—cavitation is the formation of embolisms that
reduce hydraulic conductivity and can cause branch dieback and
plant death8,9. Many trees respond to W below 21MPa by decreas-
ing the aperture of microscopic pores (stomata) in leaves through
which water vapour is lost in transpiration and carbon dioxide
(CO2) is gained in photosynthesis

10. Reduced stomatal conductance
can decrease cavitation risk and turgor loss, but it also limits photo-
synthesis. Thus, as trees grow taller, maintenance of favourable
water status might progressively slow height growth by reducing
photosynthetic carbon gain4,6.

We accessed the crowns of redwoods to measure water stress and
photosynthesis and to collect samples for laboratory analyses.
Within individual trees, the xylem pressure of small, foliated
branches measured during the dry season (late September to early
October) was strongly correlated with height (Fig. 1a). The gradient
before dawn, when transpiration was negligible, averaged
20.0096 ^ 0.0007MPam21 for five trees over 110 m tall
(R2 . 0.97, P , 0.0001), nearly identical to the hydrostatic gradi-
ent due to gravity (20.0098MPam21) as predicted by the cohe-
sion-tension theory7. The slope of the xylem pressure–height
relationship was slightly steeper (20.0106 ^ 0.0022MPam21) at
midday when the evaporative gradient and transpiration were high.
The minimum xylem pressure (that is, maximum tension) recorded
in the highest branches sampled (108 ^ 1.2 m) averaged
21.84 ^ 0.04MPa. The importance of height per se for water
potential was evident in that nearly two-thirds of the midday
xylem pressure was due to gravity.

Reduced water potential due to soil drought causes a decline in
the turgor of living plant cells that is necessary for cell growth and
leaf expansion11. To determine if this also occurs as water potential
declines with height, we estimated turgor at dry-season water
potentials from pressure–volume measurements. Turgor (in MPa)
declined linearly with height, h, as turgor ¼ 2ð0:0074^ 0:0004Þh
þð1:30^ 0:07Þ, n ¼ 4 trees, ranging from 0.93MPa at 50m to
0.48MPa at 110m. At night when xylem pressure increased, the
turgor gradient was less steep, turgor¼2ð0:0044^ 0:0023Þh
þð1:39^ 0:19Þ, and turgor was 0.3–0.4MPa higher than at
midday.
Given the role of turgor in leaf expansion, its reduction with

height may underlie the distinct vertical gradient in leaf structure in
redwoods (Fig. 2). Leaf shape varied from large and expanded in the
lower crown to small and scale-like at the treetop.We quantified this
variation in terms of the leaf mass:area ratio (LMA, gm22), which
increased exponentially over a fourfold range with height (Fig. 1b,
LMA ¼ (37.1 ^ 12.3)exp(0.0260 ^ 0.0030)h, 0.88 # R2 # 0.99,
0.0001 # P # 0.003, n ¼ 5 trees). At 112m, LMA was similar to
the highest published value for terrestrial plants12. Height-related
variation in LMA has been attributed to light level in forest
canopies13,14. In our study trees, we found that the direct site factor
(DSF), an index of direct solar radiation based on hemispherical
photographs, decreased by 14% of the value at 110m for a 10-m
decrease in height. Relative to water potential, the influence of
light on LMA was small, however; DSF added only 4% to the
explained variation of within-crown LMA in a multiple regression
analysis including DSF (P ¼ 0.0025) and predawn xylem pressure
(P , 0.0001) as independent variables (adjusted R2 ¼ 0.88, n ¼ 33
samples from five redwoods over 110m tall). The following obser-
vations (Fig. 3) also support the hypothesis that water relations are
more important than light environment in determining leaf struc-
ture in redwood: (1) leaves of a 2-m-tall epiphytic redwood rooted
in soil near the top of a 95-m-tall redwood were much more

Figure 1 Variation with height in physiological and structural features of redwood trees at
Humboldt Redwoods State Park, California. a, Xylem pressure of small branches

measured at predawn (upper group) and midday (lower group) during September and

October 2000. The upper line is the expected gravitational pressure gradient with the

same y-intercept as the average of the 5 trees. b, Leaf mass:area ratio (g m22) of second-

year internodes increases with height. c, Foliar carbon isotope composition (d13C, ‰)

increases with height within the crowns of 5 trees over 110m tall and among the tops

(filled circles) of 16 trees from 85 to 113m tall. d, Light-saturated photosynthetic rate per
unit mass (nmol CO2 g

21 s21) decreases with height. The regression line is fitted to data

from six trees. Different symbol types denote different trees and are consistent for a–d.
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Written in the stars
“Some say the world will end in fire; 
Some say in ice…”*

What is the fate of the Universe? Probably it will end in ice if we are to believe this year’s Nobel Laureates. 
They have carefully studied several dozen exploding stars, called supernovae, in faraway galaxies and 
have concluded that the expansion of the Universe is speeding up. 

The discovery came as a complete surprise even to the Nobel Laureates themselves. What they saw would be 
like throwing a ball up in the air, and instead of having it come back down, watching as it disappears more 
and more rapidly into the sky, as if gravity could not manage to reverse the ball’s trajectory. Something simi-
lar seemed to be happening across the entire Universe.

The growing rate of the expansion implies that the Universe is being pushed apart by an unknown form of 
energy embedded in the fabric of space. This dark energy makes up a large part of the Universe, more than 
70 %, and it is an enigma, perhaps the greatest in physics today. No wonder, then, that cosmology was shaken 
at its foundations when two different research groups presented similar results in 1998.

Saul Perlmutter headed one of the two research teams, the Supernova Cosmology Project, initiated a decade 
earlier in 1988. Brian Schmidt headed another team of scientists, which towards the end of 1994 launched 
a competing project, the High-z Supernova Search Team, in which Adam Riess was to play a crucial role.
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Figure 1. The world is growing. The expansion of the Universe began with the Big Bang 14 billion years ago, but slowed down during the 
first several billion years. Eventually it started to accelerate. The acceleration is believed to be driven by dark energy, which in the begin-
ning constituted only a small part of the Universe. But as matter got diluted by the expansion, the dark energy became more dominant.
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  The Cosmological Principle: homogeneity and isotropy



  The Cosmological Principle: homogeneity and isotropy
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The gravity of vacuum fluctuations

SOVIET PHYSICS USPEKHI VOLUME 11, NUMBER 3 NOVEMBER-DECEMBER 1968

530.12:531.51
THE COSMOLOGICAL CONSTANT AND THE THEORY OF ELEMENTARY PARTICLES

Ya. B. ZEL'DOVICH
Institute of Applied Mathematics, USSR Academy of Sciences

Usp. Fiz. Nauk 95, 209-230 (May, 1968)

I NTEREST in gravitation theory with a cosmological
constant was revived in 1967. Three papers were
published, by Petrosian, Salpeter, and Szekeres in the
USA[1J and by Shklovskii[2] and Kardashev[3] in the
USSR, in which universe evolution models in such a
theory (the A models) are considered. The stimulus
for the revival of the theory was provided by new ob-
servational data on remote quasistellar sources
(quasars and quasags, QSR and QSG in the English -
language literature)* It turned out, first of all, that
for these objects the connection between the brightness
and the red shift does not fit the simple models without
a cosmological constant (and without assumptions con-
cerning the evolution of the quasars!). In addition, as
noted by the Burbidges , in ten quasars whose spectra
have revealed absorption lines the red shift of these
lines z = (A - Ao)/Ao lies in the narrow range 1.94
< z < 1.96 or even 1.945 < z < 1.955. This phenome-
non will henceforth be referred to briefly as a = 1.95.

The A models were introduced in[1J to explain the
observed relation between the red shift and the bright-
ness; the explanation of z = 1.95 in the absorption
spectrum was touched upon casually. References 2
and 3 are devoted entirely to the explanation of
z = 1.95: the absorption lines are ascribed to galaxies
lying along the path of the light ray arriving from the
quasar. The predominant appearance of one value of z
is attributed by the authors to the fact that in this case
the expansion of the universe was greatly slowed down
both compared with the preceding period (z > 1.95)
and compared with the succeeding period (z < 1.95 up
to z = 0, corresponding to the present time). The
slowed-down expansion leads to an increase of the path
traversed by the ray in the corresponding interval of z,
and takes into account the probability of encounter be-
tween the light ray from the quasar and the galaxy
since that absorption lines with precisely this value of
z, i.e., with z close to 1.95, are recorded.

An expansion law with a sharp deceleration at a
definite value of z is possible only for the A models;
it is necessary here to satisfy with great accuracy the
relation between the total amount of matter in the
universe and the value of the cosmological constant A.
The discussed model is closed in its three dimensional
geometrical structure. As shown by Kardashev^3-1, the
assumption of a decelerated expansion at a definite
value of z (together with the known value of the Hubble
constant) yields perfectly defined values of the density

*The term A model will henceforth be used to designate the solution
of the equations of an expanding universe, in which it is assumed that
the cosmological constant is A=£ 0 (see Appendices II and III). Quasars
are quasistellar (i.e., pointlike) radio sources, and quasags are quasistellar
galaxies, similar to quasars in their optical properties and in particular
having large z, but having no noticeable radio emission.

of matter and of the radius of the world at the present
time.

At first glance such an explanation is on the whole
unlikely. It must be borne in mind, however, that other
attempts at explaining the predominant absorption with
z = 1.95 are at present no less far-fetched and ar t i -
ficial. In a paper at the 13th Congress of the Inter-
nation Astronomical Union in Prague (August 1967),
Burbidge spoke of z = 1.95 as an argument in favor of
the local theory of quasars. According to the local
theory, the distance from us to the quasars is less than
100 Mpsec, and the red shift of the emission and ab-
sorption lines is of gravitational origin and is connected
with the work function of the quanta from the gravita-
tional field of the quasar[5j*. However, no concrete
model which yields precisely z = 1.95, or at least an
equal value of z for the quasars with different masses
during different stages of evolution, was proposed by
Burbidge or anyone else.

Thus, the predominant appearance of z = 1.95 in the
absorption is really an argument in favor of the A
model of the universe. At the same time, it is still
impossible to regard this argument as final. The A
model proposed in[3j raises also unanswered questions
(pertaining to the formation of galaxies) and simply
difficulties connected with the observed distribution of
the quasars with respect to the red shift of the emis-
sion line z e m . This distribution does not reveal at
zem = 1-95 the concentration that could naturally be
expected in the A model. Nor does this A model
agree with the rather crude estimates obtained for the
law of expansion in the nearest region with z < 0.5
from Sandage's observations of various galaxies[7].
Even the initial statement itself concerning the pre-
dominant value z = 1.95 for the absorption lines
should be refined and verified for a large number of
quasars. Thus, the question of the concrete A model
with a perfectly defined value of A remains open at the

*The universally accepted assumption of the cosmological origin of
the red shift, connecting it with the over-all expansion of the universe,
yields R = cz/H = 4000z Mpsec for nearby quasars with small z; at large
values of z, the definition of R is not unique, but it is clear that we are
always dealing with distances larger by tens and hundreds of times than
in the local theory. A very recent sensational communication[29J con-
cerns a report by Matthews, that an appreciable change of the optical
picture of the quasar 3C-287 with z = 1.055 was observed over the period
of one year, from 1965 through 1966. This fact is interpreted by
Matthews as favoring of the local theory. The conclusion, however, is
ambiguous: in accordance with calculations by Rees [6], the particles
ejected with relativistic velocity by the explosion, can change of angular
dimension at a rate dg/dt = c/3/R-̂ /l -/32, corresponding to an apparent
linear velocity v/y' 1 - 01 > c, 0 = v/c; these considerations have been
further developed and analyzed recently by I. S. Shklovskii. Thus, when
1 - 0 = 10"s we can reconcile Matthews' observations with the
cosmological hypothesis concerning a large distance to the quasars.
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R„——,'g R —A,g„=—8e GT„ (2.1)

Now, for A, &0, there was a static solution for a universe
filled with dust of zero pressure and mass density

8+6 (2.2)

Its geometry was that of a sphere S3, with proper cir-
cumference 2m.v, where

II. EARLY HISTORY
After completing his formulation of general relativity

in 1915—1916, Einstein (1917)attempted to apply his new
theory to the whole universe. His guiding principle was
that the universe is static: "The most important fact that
we draw from experience is that the relative velocities of
the stars are very small as compared with the velocity of
light. " No such static solution of his original equations
could be found (any more than for Newtonian gravita-
tion), so he modified them by adding a new term involv-
ing a free parameter A., the cosmological constant:

I. INTRODUCTION r = 1/VSmpG
so the mass of the universe was

(2.3)

Physics thrives on crisis. We all recall the great pro-
gress made while finding a way out of various crises of
the past: the failure to detect a motion of the Earth
through the ether, the discovery of the continuous spec-
trum of beta decay, the ~-0 problem, the ultraviolet
divergences in electromagnetic and then weak interac-
tions, and so on. Unfortunately, we have run short of
crises lately. The "standard model" of electroweak and
strong interactions currently faces neither internal incon-
sistencies nor conflicts with experiment. It has plenty of
loose ends; we know no reason why the quarks and lep-
tons should have the masses they have, but then we know
no reason why they should not.
Perhaps it is for want of other crises to worry about

that interest is increasingly centered on one veritable
crisis: theoretical expectations for the cosmological con-
stant exceed observational limits bP some 120 orders of
magnitude. ' In these lectures I will first review the histo-
ry of this problem and then survey the various attempts
that have been made at a solution.

*Morris Loeb Lectures in Physics, Harvard University, May
2, 3, 5, and 10, 1988.
For a good nonmathematical description of the cosmological

constant problem, see Abbott (1988).

M=2mr p=—k ' 6 (2.4)4
In some popular history accounts, it was Hubble' s
discovery of the expansion of the universe that led Ein-
stein to retract his proposal of a cosmological constant.
The real story is more complicated, and more interesting.
One disappointment came almost immediately. Ein-

stein had been pleased at the connection in his model be-
tween the mass density of the universe and its geometry,
because, following Mach's lead, he expected that the
mass distribution of the universe should set inertial
frames. It was therefore unpleasant when his friend de
Sitter, with whom Einstein remained in touch during the
war, in 1917 proposed another apparently static cosmo-
logical model with no matter at all. (See de Sitter, 1917.)
Its line element (using the same coordinate system as de
Sitter, but in a difterent notation) was

dv = [dt dr—1

cosh Hv

H tanh Hr(dO —+ sin Odg )],
(2.5)

2The notation used here for metrics, curvatures, etc., is the
same as in W'einberg (1972).
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Fluctuation-induced electromagnetic forces between neutral 
bodies become more and more important as micromechani-
cal and micro!uidic devices enter submicrometre scales. "ese 

forces are known by several di#erent names, depending on the 
regime in which they operate, including van der Waals, Casimir–
Polder and, more generally, Casimir forces (of which van der Waals 
forces are special cases)1–4. Casimir forces arise from electromag-
netic waves created by quantum and thermal !uctuations5–21. "e 
dramatic progress made in the theoretical understanding and 
measurement of Casmir forces over the past ten years may soon 
allow them to be exploited in novel microelectromechanical sys-
tems (MEMS) and micro!uidic devices8,22–24.

Experimentally, Casimir forces have been measured with ever 
greater precision25–34 in microstructured geometries that increas-
ingly deviate from the original parallel-plate con$guration26. "ey 
have even been measured in !uids that allow the sign of the force 
to change35. "eoretically, the calculation of Casimir forces was tra-
ditionally limited to planar or near-planar geometries, but recent 
developments have led to a host of new computational meth-
ods capable of modelling arbitrary non-planar geometries with 
high accuracy36–45. "is combined experimental and theoretical 
progress has allowed researchers to design geometries and materi-
als that exhibit force phenomena signi$cantly di#erent from the 
well-known attraction between parallel plates. Such advances may 
lead to new regimes of operation for micromechanical devices8,46 
and may also provide new ways to combat unwanted interactions 
such as ‘stiction’ between moving parts. In this Review, we sum-
marize the basic physics of Casimir and van der Waals interac-
tions, discuss recent experimental systems, outline theoretical 
progress and consider some of the latest predictions of this unusual 
force phenomena.

From van der Waals to Casimir forces
Van der Waals forces are a familiar concept from introductory 
physics and chemistry: two neutral particles have !uctuating 
dipole moments resulting from quantum or thermal e#ects, which, 
for a particle separation of d, lead to a d–6 interaction energy that 
is commonly used, for example, as a long-range attraction term 
when describing the interactions between atoms and molecules1–4. 
Physically, this attraction arises as shown in Fig. 1a; whenever one 
particle acquires a spontaneous dipole moment p1, the resulting 
dipole electric $eld (black lines) polarizes the adjacent particle to 

The Casimir e!ect in microstructured geometries
Alejandro W. Rodriguez1,2, Federico Capasso1* and Steven G. Johnson2

In 1948, Hendrik Casimir predicted that a generalized version of van der Waals forces would arise between two metal plates due 
to quantum fluctuations of the electromagnetic field. These forces become significant in micromechanical systems at submi-
crometre scales, such as in the adhesion between movable parts. The Casimir force, through a close connection to classical pho-
tonics, can depend strongly on the shapes and compositions of the objects, stimulating a decades-long search for geometries 
in which the force behaves very di!erently from the monotonic attractive force first predicted by Casimir. Recent theoretical 
and experimental developments have led to a new understanding of the force in complex microstructured geometries, includ-
ing through recent theoretical predictions of Casimir repulsion between vacuum-separated metals, the stable suspension of 
objects and unusual non-additive and temperature e!ects, as well as experimental observations of repulsion in fluids, non-
additive forces in nanotrench surfaces and the influence of new material choices.

produce an induced dipole moment p2 ~ d–3 (ref. 4). Assuming 
positive polarizabilities, the direction of the dipole $elds means 
that these two dipoles are oriented so as to attract each other, 
with an interaction energy that scales as d–6. "is leads to the van 
der Waals ‘dispersion’ force, and similar considerations apply to 
particles with permanent dipole moments that can rotate freely. 
"e key to more general considerations of Casimir physics is to 
understand that this d–6 picture of van der Waals forces makes two 
crucial approximations that are not always valid: it employs the 
quasi-static approximation to ignore wave e#ects, and also ignores 
multiple scattering if there are more than two particles.

"e quasi-static approximation assumes that the dipole moment 
p1 polarizes the second particle instantaneously, which is valid if d is 
much smaller than the typical wavelength of the !uctuating $elds. 
However, the $nite wave propagation speed of light must be taken 
into account when d is much larger than the typical wavelength, as 
shown in Fig. 1b, and it turns out that the resulting Casimir–Polder 
interaction energy asymptotically scales as d–7 for large d (ref. 47). 
More generally, the interaction is not a simple power law between 
these limits, but instead depends on an integral of !uctuations at 
all frequencies scaled by a frequency-dependent polarizability of 
the particles4.

"e presence of multiple particles further complicates the situ-
ation because multiple scattering must be considered (Fig. 1b). For 
example, with three particles, the initial dipole p1 will induce polar-
izations p2 and p3 in the other two particles, but p2 will create its 
own $eld that further modi$es p3, and so on. "us, the interaction 
between multiple particles is generally non-additive, and there is no 
two-body force law that can simply be summed to incorporate all 
interactions. Multiple scattering is negligible for a su%ciently dilute 
gas or for weak polarizabilities4,48, but it becomes very signi$cant 
for interactions between two (or more) solid bodies, which consist 
of many !uctuating dipole moments that all interact in a compli-
cated way through electromagnetic radiation (Fig. 1c). When these 
multiple scattering e#ects are combined with wave retardation in a 
complete picture, they yield the Casimir force9.

Hendrik Casimir based his prediction on a simpli$ed model 
involving two parallel perfectly conducting plates separated by a 
vacuum. Although the Casimir force arises from electromagnetic 
!uctuations, real photons are not involved. Quantum mechanically, 
these !uctuations can be described in terms of virtual photons of 
energy equal to the zero-point energies of the electromagnetic 
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Fluctuation-induced electromagnetic forces between neutral 
bodies become more and more important as micromechani-
cal and micro!uidic devices enter submicrometre scales. "ese 

forces are known by several di#erent names, depending on the 
regime in which they operate, including van der Waals, Casimir–
Polder and, more generally, Casimir forces (of which van der Waals 
forces are special cases)1–4. Casimir forces arise from electromag-
netic waves created by quantum and thermal !uctuations5–21. "e 
dramatic progress made in the theoretical understanding and 
measurement of Casmir forces over the past ten years may soon 
allow them to be exploited in novel microelectromechanical sys-
tems (MEMS) and micro!uidic devices8,22–24.

Experimentally, Casimir forces have been measured with ever 
greater precision25–34 in microstructured geometries that increas-
ingly deviate from the original parallel-plate con$guration26. "ey 
have even been measured in !uids that allow the sign of the force 
to change35. "eoretically, the calculation of Casimir forces was tra-
ditionally limited to planar or near-planar geometries, but recent 
developments have led to a host of new computational meth-
ods capable of modelling arbitrary non-planar geometries with 
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well-known attraction between parallel plates. Such advances may 
lead to new regimes of operation for micromechanical devices8,46 
and may also provide new ways to combat unwanted interactions 
such as ‘stiction’ between moving parts. In this Review, we sum-
marize the basic physics of Casimir and van der Waals interac-
tions, discuss recent experimental systems, outline theoretical 
progress and consider some of the latest predictions of this unusual 
force phenomena.

From van der Waals to Casimir forces
Van der Waals forces are a familiar concept from introductory 
physics and chemistry: two neutral particles have !uctuating 
dipole moments resulting from quantum or thermal e#ects, which, 
for a particle separation of d, lead to a d–6 interaction energy that 
is commonly used, for example, as a long-range attraction term 
when describing the interactions between atoms and molecules1–4. 
Physically, this attraction arises as shown in Fig. 1a; whenever one 
particle acquires a spontaneous dipole moment p1, the resulting 
dipole electric $eld (black lines) polarizes the adjacent particle to 
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In 1948, Hendrik Casimir predicted that a generalized version of van der Waals forces would arise between two metal plates due 
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izations p2 and p3 in the other two particles, but p2 will create its 
own $eld that further modi$es p3, and so on. "us, the interaction 
between multiple particles is generally non-additive, and there is no 
two-body force law that can simply be summed to incorporate all 
interactions. Multiple scattering is negligible for a su%ciently dilute 
gas or for weak polarizabilities4,48, but it becomes very signi$cant 
for interactions between two (or more) solid bodies, which consist 
of many !uctuating dipole moments that all interact in a compli-
cated way through electromagnetic radiation (Fig. 1c). When these 
multiple scattering e#ects are combined with wave retardation in a 
complete picture, they yield the Casimir force9.

Hendrik Casimir based his prediction on a simpli$ed model 
involving two parallel perfectly conducting plates separated by a 
vacuum. Although the Casimir force arises from electromagnetic 
!uctuations, real photons are not involved. Quantum mechanically, 
these !uctuations can be described in terms of virtual photons of 
energy equal to the zero-point energies of the electromagnetic 
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The vacuum stress between closely spaced conducting surfaces, due to the modification of the zero-

point fluctuations of the electromagnetic field, has been conclusively demonstrated. The measurement
employed an electromechanical system based on a torsion pendulum. Agreement with theory at the
level of 5% is obtained. [S0031-9007(96)02025-X]
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One of the most remarkable predictions of quantum
electrodynamics (QED), obtained by Casimir in 1948, is
that two parallel, closely spaced, conducting plates will be
mutually attracted [1]. This attractive force is due to the
exclusion of electromagnetic modes between the plates
(as compared to free space) and has magnitude (per unit
surface area A)

FsadyA ≠
p2

240
h̄c
a4 ≠ 0.016

1
a4 dyn smmd4ycm2, (1)

where a is the plate separation; in principle, a QED effect
can directly influence a macroscopic, classical, apparatus.
In spite of the extensive theoretical attention this effect
has received over the years (see [2,3] for recent reviews),
there has been only one attempt at its measurement. This
measurement, as reported by Sparnaay in 1958, showed
an attractive force “not inconsistent with” the prediction
given by Eq. (1), but with effectively 100% uncertainty
[4]. A closely related effect, the attraction of a neutral
atom to a conducting plate, has been recently measured
[5]; good agreement with theory was found.
The Casimir force is closely related to the van der Waals

attraction between dielectric bodies. Formally, Eq. (1) is
obtained by letting the dielectric constant e in the Lif-
shitz theory [6] approach infinity, which is an appropri-
ate description for a conducting material. However, in
practical terms, the Casimir and van der Waals forces are
quite different; the van der Waals force is always attrac-
tive, whereas the sign of the Casimir force is geometry
dependent. For example, if a thin spherical conducting
shell is cut in half, the two hemispheres will experience
a mutual repulsive force [7]. These points are discussed
in Refs. [2,3]. A number of experimental measurements
of short-range forces between dielectric bodies of various
forms have been performed; see Ref. [2] for a review.
For our measurement of the Casimir force, the conduc-

tors were in the form of a flat plate and a sphere. Our
first attempts at measurements using parallel plates were
unsuccessful; this is because it is very difficult to maintain
parallelism at the requisite accuracy (1025 rad for 1 cm
diameter plates). There is no issue of parallelism when
one plate has a spherical surface; geometrically, the sys-
tem is described by the separation at the point of closest
approach. However, when one plate is spherical, Eq. (1)

must be modified; the force for this geometry is sim-
ply obtained by the use of the so-called proximity force
theorem (PFT) [8], which in the present case reduces to
F ≠ 2pRE where R is the radius of curvature of the
spherical surface, and E is the potential energy per unit
surface area which gives rise to the force of attraction
between flat plates. Thus, the magnitude of the Casimir
force between a sphere and a flat surface is given by

Fcsad ≠ 2pR

√
1
3

p2

240
h̄c
a3

!
. (2)

and the result is independent of the plate area.
There are at least two corrections to the Casimir force.

The first is the effect due to the finite temperature T ¯
300 K; this correction has an illustrious history as dis-
cussed by Schwinger et al. [9]; the thermal corrections
for the Casimir force and van der Waals force are dif-
ferent, and are properly derived for the case of conducting
plates in Refs. [9–11]. Taking the results of Brown and
Maclay [11], the surface energy is given by E ≠ aT00,
where T00 is the (volume) energy density. Using the PFT
and Eq. (20a) of [11], the total magnitude of the Casimir
force is

FT
c sad ≠ Fcsad

µ
1 1

720
p2 fsjd

∂
, (3)

where j ≠ kTayh̄c ≠ 0.126a mm21 at T ≠ 300 K (k is
Boltzmann’s constant) and

fsjd ¯
Ω

sj3y2pdz s3d 2 sj4p2y45d, for j # 1y2 ,
sjy8pdz s3d 2 sp2y720d, for j . 1y2 ,

(4)

where z s3d ≠ 1.202 . . .. It is interesting to note that in
the large a limit, the correction is independent of h̄c and
has the appearance of a classical effect; this is analogous
to the Rayleigh-Jeans limit of the black body spectrum.
The second correction, obtained by Schwinger

et al. [9], is due to the finite conductivity of the plates
(modified by the use of the PFT to the case where one
plate is spherical);

F0
csad ≠ Fcsad

√
1 1

4c
avp

!
, (5)
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Precision measurements and manipulations of Casimir forces
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Stable Casimir equilibria
and quantum trapping
Rongkuo Zhao1*, Lin Li1*, Sui Yang1*, Wei Bao1*, Yang Xia1, Paul Ashby2,
Yuan Wang1, Xiang Zhang1,3†

The Casimir interaction between two parallel metal plates in close proximity is usually thought
of as an attractive interaction. By coating one object with a low–refractive index thin film, we
show that the Casimir interaction between two objects of the same material can be reversed
at short distances and preserved at long distances so that two objects can remain without
contact at a specific distance.With such a stable Casimir equilibrium, we experimentally
demonstrate passive Casimir trapping of an object in the vicinity of another at the nanometer
scale, without requiring any external energy input.This stable Casimir equilibrium and quantum
trapping can be used as a platform for a variety of applications such as contact-free
nanomachines, ultrasensitive force sensors, and nanoscale manipulations.

I
n 1948, Hendrik Casimir predicted that an
attractive force occurs between two parallel,
uncharged, perfectly conducting plates closely
separated in a vacuum; this force has come to
be known as the Casimir force (1). The effect

arises from quantum fluctuation–induced tem-
porary electromagnetic fields between the two
plates (2). Electromagnetic modes between two
plates are discretized so that the total intensity
of fluctuation-induced electromagnetic fields be-
tween the plates is less than that in free space (3).
Thus, the plates are pushed toward each other as
a result of unbalanced electromagnetic pressure
in the confined space (4).
TheCasimir forcebetween twomirror-symmetric

objects of the samematerial has been proven to
be always attractive, monotonically increasing
as the separation decreases independently of
the objects’ shape, local dielectric function, and

environment (5). No stable Casimir equilibria
have been found to exist between electrically
neutral objects composed of the samematerials,
regardless of whether their permittivities are
higher or lower than that of the environment
medium (6).
The attractive nature of the Casimir effect is

detrimental for micro- and nanomechanical sys-
tems, resulting in irreversible adhesion (7–9) and
frictional forces (10, 11) as well as undesired
aggregation of nanoparticles (12). The possi-
bility of repulsive Casimir interactions has thus
prompted researchers to pursue stable Casimir
equilibria. The monotonically repulsive Casimir
force can be achieved by embedding two objects
of different materials in a fluid (13–15).However,
the stable Casimir equilibria remain elusive. In
this work, we address the question of whether
Casimir equilibrium exists, meaning that Casimir

forces can be repulsive at short separation dis-
tances and attractive at long distances.
Stable Casimir equilibria were predicted in

theory by arranging one of the interacting ob-
jects enclosed by another (16, 17) so that the
surrounding repulsive Casimir forces could
shroud the object at the center. This special
topological requirement limits possible applica-
tions and also makes experimental verification
extremely difficult. Because Casimir forces at large
separations aremainly contributed by low electro-
magnetic frequencies and at small separations
by high frequencies, a stable Casimir equilibrium
could be realized if small frequencies contribute
only attractive forces and large frequencies pro-
vide sufficient repulsive forces (18, 19). Owing to
difficulties in weak force measurement in liquid
environments and the strict combination of ma-
terials, no experiment to date has verified this
theoretical prediction, although indirect evidence
has been found in interfacial premelting of ice
(18). Other approaches associated with the design
of specific geometries (20–22) were proposed, but
these methods can produce Casimir equilibrium
only along the axis of symmetry, leaving insta-
bility for displacements in other directions.
Furthermore, although theoretical studies with
exotic materials (23–27) or excited-state atoms
(28) also suggest that it is possible to obtain
stable Casimir equilibria, no experimental evi-
dence has been demonstrated. In this study, we
theoretically propose and experimentally dem-
onstrate that stable Casimir equilibria can be
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Fig. 1. Stable Casimir equilibrium enabled by a low–refractive index
coating layer. (A) By coating a thin layer of Teflon on a gold substrate, a stable
Casimir equilibrium is formed so that a gold nanoplate can be trapped at an
equilibrium position in ethanol. (B) Casimir interaction energy between the gold

nanoplate and the Teflon-coated gold surface.The Casimir force given by the
derivative of the Casimir energy with respect to the distance is repulsive at short
distances and attractive at long distances. (C) Thickness and surface profile of
the gold nanoplate along the dashed line in the inset AFM image of the gold plate.
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of as an attractive interaction. By coating one object with a low–refractive index thin film, we
show that the Casimir interaction between two objects of the same material can be reversed
at short distances and preserved at long distances so that two objects can remain without
contact at a specific distance.With such a stable Casimir equilibrium, we experimentally
demonstrate passive Casimir trapping of an object in the vicinity of another at the nanometer
scale, without requiring any external energy input.This stable Casimir equilibrium and quantum
trapping can be used as a platform for a variety of applications such as contact-free
nanomachines, ultrasensitive force sensors, and nanoscale manipulations.
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separated in a vacuum; this force has come to
be known as the Casimir force (1). The effect

arises from quantum fluctuation–induced tem-
porary electromagnetic fields between the two
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plates are discretized so that the total intensity
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Casimir equilibrium is formed so that a gold nanoplate can be trapped at an
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 

 

a van der Waals (quasistatic fields) b Casimir–Polder (waves/retardation) c Casimir e!ect (macroscopic bodies)
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Figure 1 | Relationship between van der Waals, Casimir–Polder and Casimir forces, whose origins lie in the quantum fluctuations of dipoles.  
a, A fluctuating dipole p1 induces a fluctuating electromagnetic dipole field, which in turn induces a fluctuating dipole p2 on a nearby particle, leading to van 
der Waals forces between the particles. b, When the particle spacing is large, retardation/wave e!ects modify the interaction, leading to Casimir–Polder 
forces. When more than two particles interact, the non-additive field interactions lead to a breakdown of the pairwise force laws. c, In situations consisting 
of macroscopic bodies, the interaction between the many fluctuating dipoles present within the bodies leads to Casimir forces.
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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modes of the system. By considering the contribution of the elec-
tromagnetic !eld modes to the zero-point energy (U) of the parallel 
plate con!guration, Casimir predicted an attractive force between 
the plates. Because only electromagnetic modes that have nodes 
on both walls can exist within the cavity, the mode frequencies (ω) 
depend on the separation between the plates, giving rise to a pres-
sure of PC = −∂U/∂d (ref. 9):

(1)PC =−            =−ħcπ2

240d4
1.3 × 10–27 Nm2

d4

where c is the vacuum speed of light and ħ is the reduced Planck’s 
constant. $e force in this case is attractive because the mode den-
sity in free space is larger than that between the plates. Following 
Casimir’s calculation, Lifshitz, Dzyaloshinski ̆ı and Pitaveski ̆ı 
considered the more general case of realistic dielectric plates by 
exploiting the %uctuation-dissipation theorem, which relates the 
dissipative properties of the plates (that is, the optical absorp-
tion resulting from the many microscopic dipoles in the plates) 
and the resulting electromagnetic %uctuations at equilibrium10. 
For realistic metallic plates separated by d, the force again scales 
as d–4 for large d. At small d, the force scales as d–3 (this is the 
quasi-static limit, where the coe&cient is known as the Hamaker 
constant4), with a complicated intermediate d-dependence that is 
determined by the frequency-dependent permittivity (ε) of the 
materials. Here, ‘small’ and ‘large’ d are relative to a characteristic 
wavelength λ0, which for metals is the plasma wavelength and is 
typically in the ultraviolet range (a few hundred nanometres). $e 
geometry of the system can be used to greatly modify wave propa-
gation beyond the simple planar regime, but a broad-bandwidth 
scattering calculation is required to capture the complete physics 
of such interactions38.

Although a complete description of the Casimir interaction 
between macroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a macroscopic body7,47. 
$e particle can be thought of as a %uctuating dipole moment p 
(proportional to Im(α), the dissipation), which generates electro-
magnetic !elds that propagate outwards, scatter o' the body and 
then return to the location of the particle, producing a total !eld 
E (the ‘Green’s function’) and an energy −p u E. To compute the 
interaction of the dipole with the body, one subtracts the !eld E0 
produced by an isolated dipole to obtain an interaction energy 

U ~ −p u (E − E0), which is !nite even for a point dipole (whereas 
E and E0 themselves diverge at the source point). $is energy must 
be integrated over %uctuations at all frequencies, multiplied by an 
appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of thermal %uctuations at 
non-zero temperatures. $e key fact is that computing Casimir 
interactions reduces to solving classical scattering problems, and 
this fact carries over to more general problems involving interac-
tions between macroscopic bodies — such bodies consist of many 
such dipoles, and correspondingly one must solve many scattering 
problems for many current sources or incident waves. $is has 
three consequences, which are discussed in more detail below. 
First, it is evident that standard computational techniques from 
classical electromagnetism can be used to solve for the Green’s 
function and hence the Casimir energy, although many classical 
problems must be solved to yield a single U. Second, the non-
additivity is clear because classical scattering involves solving 
the full Maxwell’s equations, and simply summing the individu-
ally scattered !elds from each body is rarely accurate. Finally, the 
scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dramatic 
implications for the conceptual and computational frameworks 
that must be used to understand and calculate Casimir phenom-
ena, as explained in Box 1.

Experimental validations
$e pioneering experiments of Spaarnay49 were not able to unam-
biguously con!rm the existence of the Casimir force because of 
(among other factors) the large error arising from the di&culty in 
maintaining a high degree of parallelism between the plates (later 
solved using a sphere–plate geometry; Fig. 2). $ree important 
points must be taken into account when making precise Casimir 
force measurements50. First, in practice there is always an electro-
static potential di'erence between the two surfaces (V0) that arises 
from the presence of di'erent metals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lms and other electrostatic e'ects34,50,51. Residual electro-
static forces must be cancelled by applying a voltage of the same 
magnitude but opposite polarity, usually ranging from a few mV 
to ^100 mV. Second, although the relative distance d between the 
surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d0 is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d0) must be 
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ir predicted an attractive force between 
the plates. Because only electrom

agnetic m
odes that have nodes 

on both walls can exist within the cavity, the m
ode frequencies (ω) 

depend on the separation between the plates, giving rise to a pres-
sure of P

C  = −∂U/∂d (ref. 9):

(1)
P

C =−            =−
ħcπ

2

240d
4

1.3 × 10
–27 N

m
2

d
4

where c is the vacuum
 speed of light and ħ is the reduced Planck’s 

constant. $
e force in this case is attractive because the m

ode den-
sity in free space is larger than that between the plates. Following 
Casim

ir’s calculation, Lifshitz, D
zyaloshinskĭı and Pitaveskĭı 

considered the m
ore general case of realistic dielectric plates by 

exploiting the %uctuation-dissipation theorem
, which relates the 

dissipative properties of the plates (that is, the optical absorp-
tion resulting from

 the m
any m

icroscopic dipoles in the plates) 
and the resulting electrom

agnetic %uctuations at equilibrium
10. 

For realistic m
etallic plates separated by d, the force again scales 

as d
–4 for large d. At sm

all d, the force scales as d
–3 (this is the 

quasi-static lim
it, where the coe&

cient is known as the H
am

aker 
constant 4), with a com

plicated interm
ediate d-dependence that is 

determ
ined by the frequency-dependent perm

ittivity (ε) of the 
m

aterials. H
ere, ‘sm

all’ and ‘large’ d are relative to a characteristic 
wavelength λ

0 , which for m
etals is the plasm

a wavelength and is 
typically in the ultraviolet range (a few hundred nanom

etres). $
e 

geom
etry of the system

 can be used to greatly m
odify wave propa-

gation beyond the sim
ple planar regim

e, but a broad-bandwidth 
scattering calculation is required to capture the com

plete physics 
of such interactions 38.

Although a com
plete description of the Casim

ir interaction 
between m

acroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a m

acroscopic body
7,47. 

$
e particle can be thought of as a %uctuating dipole m

om
ent p 

(proportional to Im
(α), the dissipation), which generates electro-

m
agnetic !elds that propagate outwards, scatter o' the body and 

then return to the location of the particle, producing a total !eld 
E (the ‘G

reen’s function’) and an energy −p u E. To com
pute the 

interaction of the dipole with the body, one subtracts the !eld E
0  

produced by an isolated dipole to obtain an interaction energy 

U
 ~ −p u (E − E

0 ), which is !nite even for a point dipole (whereas 
E and E

0  them
selves diverge at the source point). $

is energy m
ust 

be integrated over %uctuations at all frequencies, m
ultiplied by an 

appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of therm

al %uctuations at 
non-zero tem

peratures. $
e key fact is that com

puting Casim
ir 

interactions reduces to solving classical scattering problem
s, and 

this fact carries over to m
ore general problem

s involving interac-
tions between m

acroscopic bodies —
 such bodies consist of m

any 
such dipoles, and correspondingly one m

ust solve m
any scattering 

problem
s for m

any current sources or incident waves. $
is has 

three consequences, which are discussed in m
ore detail below. 

First, it is evident that standard com
putational techniques from

 
classical electrom

agnetism
 can be used to solve for the G

reen’s 
function and hence the Casim

ir energy, although m
any classical 

problem
s m

ust be solved to yield a single U
. Second, the non-

additivity is clear because classical scattering involves solving 
the full M

axwell’s equations, and sim
ply sum

m
ing the individu-

ally scattered !elds from
 each body is rarely accurate. Finally, the 

scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dram

atic 
im

plications for the conceptual and com
putational fram

eworks 
that m

ust be used to understand and calculate Casim
ir phenom

-
ena, as explained in Box 1.

Experim
ental validations

$
e pioneering experim

ents of Spaarnay
49 were not able to unam

-
biguously con!rm

 the existence of the Casim
ir force because of 

(am
ong other factors) the large error arising from

 the di&
culty in 

m
aintaining a high degree of parallelism

 between the plates (later 
solved using a sphere–plate geom

etry; Fig. 2). $
ree im

portant 
points m

ust be taken into account when m
aking precise Casim

ir 
force m

easurem
ents 50. First, in practice there is always an electro-

static potential di'erence between the two surfaces (V
0 ) that arises 

from
 the presence of di'erent m

etals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lm

s and other electrostatic e'ects 34,50,51. Residual electro-
static forces m

ust be cancelled by applying a voltage of the sam
e 

m
agnitude but opposite polarity, usually ranging from

 a few m
V 

to ^100 m
V. Second, although the relative distance d between the 

surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d

0  is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d

0 ) m
ust be 
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Figure 1 | Relationship betw
een van der W

aals, Casim
ir–Polder and Casim

ir forces, w
hose origins lie in the quantum

 fluctuations of dipoles.  
a, A

 fluctuating dipole p
1  induces a fluctuating electrom

agnetic dipole field, w
hich in turn induces a fluctuating dipole p

2  on a nearby particle, leading to van 
der W

aals forces betw
een the particles. b, W

hen the particle spacing is large, retardation/w
ave e!ects m

odify the interaction, leading to Casim
ir–Polder 

forces. W
hen m

ore than tw
o particles interact, the non-additive field interactions lead to a breakdow

n of the pairw
ise force law

s. c, In situations consisting 
of m

acroscopic bodies, the interaction betw
een the m

any fluctuating dipoles present w
ithin the bodies leads to Casim

ir forces.
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Casimir cosmology: continuous n(t)



Surprises in Casimir physics with three students and a postdoc

William Simpson 
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2013-19 

Yael Avni 
Masters 
2015-17

Efi Shahmoon 
postdoc 
2014 
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Written in the stars
“Some say the world will end in fire; 
Some say in ice…”*

What is the fate of the Universe? Probably it will end in ice if we are to believe this year’s Nobel Laureates. 
They have carefully studied several dozen exploding stars, called supernovae, in faraway galaxies and 
have concluded that the expansion of the Universe is speeding up. 

The discovery came as a complete surprise even to the Nobel Laureates themselves. What they saw would be 
like throwing a ball up in the air, and instead of having it come back down, watching as it disappears more 
and more rapidly into the sky, as if gravity could not manage to reverse the ball’s trajectory. Something simi-
lar seemed to be happening across the entire Universe.

The growing rate of the expansion implies that the Universe is being pushed apart by an unknown form of 
energy embedded in the fabric of space. This dark energy makes up a large part of the Universe, more than 
70 %, and it is an enigma, perhaps the greatest in physics today. No wonder, then, that cosmology was shaken 
at its foundations when two different research groups presented similar results in 1998.

Saul Perlmutter headed one of the two research teams, the Supernova Cosmology Project, initiated a decade 
earlier in 1988. Brian Schmidt headed another team of scientists, which towards the end of 1994 launched 
a competing project, the High-z Supernova Search Team, in which Adam Riess was to play a crucial role.
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Figure 1. The world is growing. The expansion of the Universe began with the Big Bang 14 billion years ago, but slowed down during the 
first several billion years. Eventually it started to accelerate. The acceleration is believed to be driven by dark energy, which in the begin-
ning constituted only a small part of the Universe. But as matter got diluted by the expansion, the dark energy became more dominant.
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Equivalence principle: space-time is the same for everything



Equivalence principle: space-time is the same for everything
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The result(s)
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m
odes of the system

. By considering the contribution of the elec-
trom

agnetic !eld m
odes to the zero-point energy (U

) of the parallel 
plate con!guration, Casim

ir predicted an attractive force between 
the plates. Because only electrom

agnetic m
odes that have nodes 

on both walls can exist within the cavity, the m
ode frequencies (ω) 

depend on the separation between the plates, giving rise to a pres-
sure of P

C  = −∂U/∂d (ref. 9):

(1)
P

C =−            =−
ħcπ

2

240d
4

1.3 × 10
–27 N

m
2

d
4

where c is the vacuum
 speed of light and ħ is the reduced Planck’s 

constant. $
e force in this case is attractive because the m

ode den-
sity in free space is larger than that between the plates. Following 
Casim

ir’s calculation, Lifshitz, D
zyaloshinskĭı and Pitaveskĭı 

considered the m
ore general case of realistic dielectric plates by 

exploiting the %uctuation-dissipation theorem
, which relates the 

dissipative properties of the plates (that is, the optical absorp-
tion resulting from

 the m
any m

icroscopic dipoles in the plates) 
and the resulting electrom

agnetic %uctuations at equilibrium
10. 

For realistic m
etallic plates separated by d, the force again scales 

as d
–4 for large d. At sm

all d, the force scales as d
–3 (this is the 

quasi-static lim
it, where the coe&

cient is known as the H
am

aker 
constant 4), with a com

plicated interm
ediate d-dependence that is 

determ
ined by the frequency-dependent perm

ittivity (ε) of the 
m

aterials. H
ere, ‘sm

all’ and ‘large’ d are relative to a characteristic 
wavelength λ

0 , which for m
etals is the plasm

a wavelength and is 
typically in the ultraviolet range (a few hundred nanom

etres). $
e 

geom
etry of the system

 can be used to greatly m
odify wave propa-

gation beyond the sim
ple planar regim

e, but a broad-bandwidth 
scattering calculation is required to capture the com

plete physics 
of such interactions 38.

Although a com
plete description of the Casim

ir interaction 
between m

acroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a m

acroscopic body
7,47. 

$
e particle can be thought of as a %uctuating dipole m

om
ent p 

(proportional to Im
(α), the dissipation), which generates electro-

m
agnetic !elds that propagate outwards, scatter o' the body and 

then return to the location of the particle, producing a total !eld 
E (the ‘G

reen’s function’) and an energy −p u E. To com
pute the 

interaction of the dipole with the body, one subtracts the !eld E
0  

produced by an isolated dipole to obtain an interaction energy 

U
 ~ −p u (E − E

0 ), which is !nite even for a point dipole (whereas 
E and E

0  them
selves diverge at the source point). $

is energy m
ust 

be integrated over %uctuations at all frequencies, m
ultiplied by an 

appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of therm

al %uctuations at 
non-zero tem

peratures. $
e key fact is that com

puting Casim
ir 

interactions reduces to solving classical scattering problem
s, and 

this fact carries over to m
ore general problem

s involving interac-
tions between m

acroscopic bodies —
 such bodies consist of m

any 
such dipoles, and correspondingly one m

ust solve m
any scattering 

problem
s for m

any current sources or incident waves. $
is has 

three consequences, which are discussed in m
ore detail below. 

First, it is evident that standard com
putational techniques from

 
classical electrom

agnetism
 can be used to solve for the G

reen’s 
function and hence the Casim

ir energy, although m
any classical 

problem
s m

ust be solved to yield a single U
. Second, the non-

additivity is clear because classical scattering involves solving 
the full M

axwell’s equations, and sim
ply sum

m
ing the individu-

ally scattered !elds from
 each body is rarely accurate. Finally, the 

scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dram

atic 
im

plications for the conceptual and com
putational fram

eworks 
that m

ust be used to understand and calculate Casim
ir phenom

-
ena, as explained in Box 1.

Experim
ental validations

$
e pioneering experim

ents of Spaarnay
49 were not able to unam

-
biguously con!rm

 the existence of the Casim
ir force because of 

(am
ong other factors) the large error arising from

 the di&
culty in 

m
aintaining a high degree of parallelism

 between the plates (later 
solved using a sphere–plate geom

etry; Fig. 2). $
ree im

portant 
points m

ust be taken into account when m
aking precise Casim

ir 
force m

easurem
ents 50. First, in practice there is always an electro-

static potential di'erence between the two surfaces (V
0 ) that arises 

from
 the presence of di'erent m

etals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lm

s and other electrostatic e'ects 34,50,51. Residual electro-
static forces m

ust be cancelled by applying a voltage of the sam
e 

m
agnitude but opposite polarity, usually ranging from

 a few m
V 

to ^100 m
V. Second, although the relative distance d between the 

surfaces is controlled by a piezoelectric transducer, the initial sepa-
ration between the two interacting surfaces d

0  is a priori unknown 
(Fig. 2c), and therefore the absolute separation (d − d

0 ) m
ust be 
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Figure 1 | Relationship betw
een van der W

aals, Casim
ir–Polder and Casim

ir forces, w
hose origins lie in the quantum

 fluctuations of dipoles.  
a, A

 fluctuating dipole p
1  induces a fluctuating electrom

agnetic dipole field, w
hich in turn induces a fluctuating dipole p

2  on a nearby particle, leading to van 
der W

aals forces betw
een the particles. b, W

hen the particle spacing is large, retardation/w
ave e!ects m

odify the interaction, leading to Casim
ir–Polder 

forces. W
hen m

ore than tw
o particles interact, the non-additive field interactions lead to a breakdow

n of the pairw
ise force law

s. c, In situations consisting 
of m

acroscopic bodies, the interaction betw
een the m

any fluctuating dipoles present w
ithin the bodies leads to Casim

ir forces.
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Trace anomaly of a conformally invariant quantum field in curved spacetime

Robert M. %aid
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637

{Received 19 August 1977)

%e analyze a point-separation prescription for renormalizing the stress-energy operator T„„ofa quantum
field in curved spacetime, based on the assumption that the expectation value G(x,x') = (+(x)iIi(x ') + P(x ')~Ii(x))
has the form of a Hadamard elementary solution. An error is pointed out in the work of Adler, Lieberman,
and Ng: The "locally determined" piece G~(x,x') and "boundary-condition-dependent" piece 6 (x,x')
of G(x, x') do not separately satisfy the wave equation in x', as required in their proof of the
conservation of the boundary-condition-dependent contribution to T„„.This error affects the point-separation
renormalization prescription given in my previous paper describing an axiomatic approach to stress-energy
renormalization. It is now seen that this prescription yields a stress-energy tensor whose divergence is not
zero but is the gradient of a local curvature term, However, this deficiency can be corrected by subtracting
off this local curvature term times the metric tensor; as a direct consequence the trace of T„, becomes
nonvanishing. Given this result it is shown that any prescription for renormalizing T, which is consistent
with conservation (axiom 3), causality (axiom 4), and agreement with the formal expression for the matrix
element between orthogonal states (axiom 1) must yield precisely this trace, modulo the trace of a conserved
local curvature term. Hence, for consistency with the first four axioms and dimensional considerations, we
find that the trace of the stress tensor of the conformally invariant scalar field must be T"„
= {28807r ) '(C ~ ~C

&&~ +R ~R
&
—-R.) plus an arbitrary constant times +„~R. This confirms

previous work of a number of authors on the existence of trace anomalies. For consistency with axiom 5 (no
"local curvature terms containing third or higher derivatives of the matric"), the coefficient of the + g' R
term must be zero. However, it is argued that if the expectation value G(x,x') is of the Hadamard form
in the massless case, as assumed in defining the point-separation renormalization prescription, then axiom 5
cannot be satisfied and, indeed, a completely unambiguous prescription for T„, cannot be given without
introducing a length scale.

I. INTRODUCTION

The theory of a quantum field interacting with a
classical gravitational field is—by comparison
with theories of quantum fields undergoing non-
linear self- interaction —relatively free of mathe-
matical ambiguities and difficulties. The quantum
S matrix can be derived in a clean, unambiguous
manner and unambiguous. predictions can be made
concerning particle creation in a strong gravita-
tional field (see, e.g. , Ref. 1). However, a re-
normalization problem does arise when one con-
siders the stress-energy operator, T„„, of the
quantum field. The formal expression for T„„is
quadratic in the field and hence is intrinsically
meaningless since the field operator is really a
distribution; thus, renormalization is required.
This problem is of considerable importance since
. a meaningful expression for the stress-energy
operator is needed if one is to complete the theory
(in the semiclassical approximation) by postulating
the equation

G, =8tt (T„„)
to account for the back reaction effect of the quan-

turn field on the gravitational field.
Much research has been done recently on spe-

cific techniques for renormalizing T„„, particular-
ly "point separation, '"' dimensional regulariza-
tion,"and zeta-function regularization. " In addi-
tion, I have developed an axiomatic approach'
wherein one attempts to derive the expression for
the renormalized T„,from the properties (axioms)
that it must satisfy if it is to yield a sensible
theory of back reaction within the semiclassical
framework. The axioms for the renormalized
T,„are the following:
(1) The matrix element of T„,between any two

orthogonal states agrees with the formal expres-
sion (which yields finite, unambiguous values).
(2) T„, reduces to normal ordering in Minkowski

spac ctime.
(8) Expectation values of T„„are conserved,

'7~ (T„„)= 0.
(4}Causality holds: (a) For fixed "in" state,
, T „) at point P depends only on the spacetime
geometry to the past of P, (b) For fixed "out"
state, (T„„)at P depends only on the spacetime
geometry to the future of P.
(8}T „contains no local curvature terms de-
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m
odes of the system

. By considering the contribution of the elec-
trom

agnetic !eld m
odes to the zero-point energy (U

) of the parallel 
plate con!guration, Casim

ir predicted an attractive force between 
the plates. Because only electrom

agnetic m
odes that have nodes 

on both walls can exist within the cavity, the m
ode frequencies (ω) 

depend on the separation between the plates, giving rise to a pres-
sure of P

C  = −∂U/∂d (ref. 9):

(1)
P

C =−            =−
ħcπ

2

240d
4

1.3 × 10
–27 N

m
2

d
4

where c is the vacuum
 speed of light and ħ is the reduced Planck’s 

constant. $
e force in this case is attractive because the m

ode den-
sity in free space is larger than that between the plates. Following 
Casim

ir’s calculation, Lifshitz, D
zyaloshinskĭı and Pitaveskĭı 

considered the m
ore general case of realistic dielectric plates by 

exploiting the %uctuation-dissipation theorem
, which relates the 

dissipative properties of the plates (that is, the optical absorp-
tion resulting from

 the m
any m

icroscopic dipoles in the plates) 
and the resulting electrom

agnetic %uctuations at equilibrium
10. 

For realistic m
etallic plates separated by d, the force again scales 

as d
–4 for large d. At sm

all d, the force scales as d
–3 (this is the 

quasi-static lim
it, where the coe&

cient is known as the H
am

aker 
constant 4), with a com

plicated interm
ediate d-dependence that is 

determ
ined by the frequency-dependent perm

ittivity (ε) of the 
m

aterials. H
ere, ‘sm

all’ and ‘large’ d are relative to a characteristic 
wavelength λ

0 , which for m
etals is the plasm

a wavelength and is 
typically in the ultraviolet range (a few hundred nanom

etres). $
e 

geom
etry of the system

 can be used to greatly m
odify wave propa-

gation beyond the sim
ple planar regim

e, but a broad-bandwidth 
scattering calculation is required to capture the com

plete physics 
of such interactions 38.

Although a com
plete description of the Casim

ir interaction 
between m

acroscopic bodies is beyond the level of this Review, 
it is instructive to consider the interaction energy between a 
single particle with polarizability α and a m

acroscopic body
7,47. 

$
e particle can be thought of as a %uctuating dipole m

om
ent p 

(proportional to Im
(α), the dissipation), which generates electro-

m
agnetic !elds that propagate outwards, scatter o' the body and 

then return to the location of the particle, producing a total !eld 
E (the ‘G

reen’s function’) and an energy −p u E. To com
pute the 

interaction of the dipole with the body, one subtracts the !eld E
0  

produced by an isolated dipole to obtain an interaction energy 

U
 ~ −p u (E − E

0 ), which is !nite even for a point dipole (whereas 
E and E

0  them
selves diverge at the source point). $

is energy m
ust 

be integrated over %uctuations at all frequencies, m
ultiplied by an 

appropriate frequency distribution such as a Bose–Einstein dis-
tribution, which includes the e'ects of therm

al %uctuations at 
non-zero tem

peratures. $
e key fact is that com

puting Casim
ir 

interactions reduces to solving classical scattering problem
s, and 

this fact carries over to m
ore general problem

s involving interac-
tions between m

acroscopic bodies —
 such bodies consist of m

any 
such dipoles, and correspondingly one m

ust solve m
any scattering 

problem
s for m

any current sources or incident waves. $
is has 

three consequences, which are discussed in m
ore detail below. 

First, it is evident that standard com
putational techniques from

 
classical electrom

agnetism
 can be used to solve for the G

reen’s 
function and hence the Casim

ir energy, although m
any classical 

problem
s m

ust be solved to yield a single U
. Second, the non-

additivity is clear because classical scattering involves solving 
the full M

axwell’s equations, and sim
ply sum

m
ing the individu-

ally scattered !elds from
 each body is rarely accurate. Finally, the 

scattered !eld E is a rapidly oscillating function of ω because of 
interference e'ects, thus requiring a highly oscillatory integral 
over a broad bandwidth to obtain the total force; this has dram

atic 
im

plications for the conceptual and com
putational fram

eworks 
that m

ust be used to understand and calculate Casim
ir phenom

-
ena, as explained in Box 1.

Experim
ental validations

$
e pioneering experim

ents of Spaarnay
49 were not able to unam

-
biguously con!rm

 the existence of the Casim
ir force because of 

(am
ong other factors) the large error arising from

 the di&
culty in 

m
aintaining a high degree of parallelism

 between the plates (later 
solved using a sphere–plate geom

etry; Fig. 2). $
ree im

portant 
points m

ust be taken into account when m
aking precise Casim

ir 
force m

easurem
ents 50. First, in practice there is always an electro-

static potential di'erence between the two surfaces (V
0 ) that arises 

from
 the presence of di'erent m

etals in the electrical circuit con-
necting the two surfaces, di'erent work functions between the 
thin !lm

s and other electrostatic e'ects 34,50,51. Residual electro-
static forces m

ust be cancelled by applying a voltage of the sam
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m
agnitude but opposite polarity, usually ranging from

 a few m
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to ^100 m
V. Second, although the relative distance d between the 

surfaces is controlled by a piezoelectric transducer, the initial sepa-
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Van der Waals anomaly: Analog of dark energy with ultracold atoms
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In inhomogeneous dielectric media the divergence of the electromagnetic stress is related to the gradients of
ε and µ, which is a consequence of Maxwell’s equations. Investigating spherically symmetric media we show
that this seemingly universal relationship is violated for electromagnetic vacuum forces such as the generalized
van der Waals and Casimir forces. The stress needs to acquire an additional anomalous pressure. The anomaly
is a result of renormalization, the need to subtract infinities in the stress for getting a finite, physical force. The
anomalous pressure appears in the stress in media like dark energy appears in the energy-momentum tensor in
general relativity. We propose and analyze an experiment to probe the van der Waals anomaly with ultracold
atoms. The experiment may not only test an unusual phenomenon of quantum forces but also an analog of dark
energy, shedding light where nothing is known empirically.

DOI: 10.1103/PhysRevB.104.235432

I. INTRODUCTION

Van der Waals forces [1–3] dominate the microcosm of
the nanoworld: They cause electrically neutral atoms and
molecules to interact with each other on submicron scales.
The force is generated by vacuum fluctuations that electrically
polarize these particles. Other vacuum forces [4] such as the
Casimir force [5] we can understand [6] as the net effect
of van der Waals interactions between the constituents of
dielectric media (taking retardation into account [7]). There
they cause stresses in the material described by the electric
and the magnetic components σE and σM of Abraham’s stress
tensor [8,9]. Differences in these stresses create forces.

Van der Waals and Casimir forces in dielectric media
need to be renomalized, for otherwise their energy and stress
were infinite. The renormalization is local: It depends on the
electric permittivity ε and the magnetic permeability µ as
functions of space r. We know this from piecewise homo-
geneos materials [1] where the renomalizer depends on the
ε and µ of each piece. For sandwiches of several materials,
the renormalization procedure [1] does not only give finite
results, but its quantitative predictions [1] have agreed with
high-precision measurements [10–12]. There is thus empirical
evidence for the locality of renormalization.

The question is How local is renormalization? This ques-
tion arises in inhomogeneous media [13] where ε(r) and µ(r)
vary gradually. Suppose we would approximate a given inho-
mogeneous medium with a sequence of homogeneous pieces,
making each piece finer and finer. The renormalized stress on
each piece is always finite, but the limit is not: The sequence
of stresses diverges [14]. From this follows that if macroscopic
electromagnetism can account for vacuum forces in media
at all, then the renormalizer must also depend on derivatives
of ε(r) and µ(r). It should be still sufficiently local, and it
cannot depend on all derivatives of ε and µ, for otherwise the
difference between the bare stress and the renormalizer would

vanish, and the stress would get lost in renormalization. So
how local is renormalization?

We know from planar inhomogeneous media [15] (where
ε and µ vary in one direction) that the renormalizing Green
function must depend on the derivatives of ε and µ up to
second order; it is not enough to take the gradients of ε
and µ into account. Furthermore, second-order locality is not
only necessary but also sufficient for getting finite stresses,
provided ε and µ depend on frequency and tend to unity
sufficiently fast for large frequencies [15]—as is the case for
real materials [16]. Experimental tests of the results of this
second-order renormalization procedure have been proposed
[17] but not yet carried out.

In this paper, we take the next step and study spherically
symmetric media. Like in the planar case [15], the symmetry
preserves the polarizations of the electromagnetic field that
would normally get mixed in inhomogeneous media, which
considerably simplifies the problem. Spherically piecewise
homogeneous media introduce problems of their own [18–26]
but here we avoid them by taking ε(r) and µ(r) as gradually
varying with radius r.

In our paper we use Lifshitz theory [1,27–29] to cal-
culate vacuum forces. This is the theory that agrees best
with experiments on the Casimir force [6,12]. Lifshitz the-
ory uses the fluctuation-dissipation theorem [29] to relate the
quantum stress of the vacuum to classical electromagnetic
Green functions. The renormalization is carried out by sub-
tracting from the total Green function the outgoing part such
that only the scattered part remains. The physical picture
behind this renormalization procedure is the idea that van
der Waals or Casimir forces [1] are caused by the scattering
of virtual electromagnetic waves at the boundaries or inho-
mogeneities of media. The outgoing Green function depends
on the local dielectric environment, on ε(r) and µ(r), and so
renormalization is local.

2469-9950/2021/104(23)/235432(16) 235432-1 ©2021 American Physical Society
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ABSTRACT
Dark energy is one of the greatest scientific mysteries of today. The idea that dark energy originates from quantum vacuum
fluctuations has circulated since the late ’60s, but theoretical estimations of vacuum energy have disagreed with the measured
value by many orders of magnitude, until recently. Lifshitz theory applied to cosmology has produced the correct order of
magnitude for dark energy. Furthermore, the theory is based on well-established and experimentally well-tested grounds in
atomic, molecular and optical physics. In this paper, we confront Lifshitz cosmology with astronomical data. We find that the
dark–energy dynamics predicted by the theory is able to resolve the Hubble tension, the discrepancy between the observed
and predicted Hubble constant within the standard cosmological model. The theory is consistent with supernovae data, Baryon
Acoustic Oscillations and the Cosmic Microwave Background. Our findings indicate that Lifshitz cosmology is a serious
candidate for explaining dark energy.

Key words: dark energy.

1 IN T RO D U C T I O N

The cosmological standard model, the ! Cold Dark Matter (!CDM)
model, has been spectacularly successful. With a few basic principles,
it explains a vast range of phenomena over an enormous range of
time scales. With only six free parameters, it fits the complex and
detailed fluctuation spectra of the cosmic microwave background
(CMB). Nevertheless, the !CDM model lacks an explanation of the
underlying nature of three of its pillars, known as the dark sector –
inflation, dark matter, and dark energy.

In recent years, the cosmology community has been actively
looking for cracks in the !CDM model in the form of tensions
between several independent phenomena (Verde, Treu & Riess
2019). Presently, the most severe such tension is known as the Hubble
tension: the discrepancy between the Hubble constant (the present–
day expansion rate) inferred from early–universe phenomena and
the value obtained by local probes of cosmic expansion (Verde et al.
2019; Riess 2020). Not everyone agrees that these tensions are real
(Efstathiou 2020) but by revealing cracks in the !CDM model they
may shed light on the dark sector.

There have been numerous attempts to explain the Hubble tension
(Di Valentino et al. 2021). Without exception, they either require
significant changes to general relativity, the cosmological principle,
or modifications to the standard model of particle physics that have
not been experimentally tested elsewhere.

Here enters the Lifshitz theory in cosmology (Leonhardt 2019).
This theory is based on solid foundations in atomic, molecular, and
optical (AMO) physics that have been experimentally tested with
percent-level precision (Decca 2014). The connection to cosmology
is the analogy between curved space-times and dielectric media

" E-mail: dror.berechya@weizmann.ac.il (DB); ulf.leonhardt@
weizmann.ac.il (UL)

(Plebanski 1960; Leonhardt 2010) which is also the foundation of the
well-developed field of transformation optics (Service & Cho 2010).
A homogeneous and isotropic, expanding universe with scale factor
a(t) is perceived by the electromagnetic field as a medium with a
homogeneous and isotropic but evolving refractive index n(t) ∝ a(t).
Then, calculating the vacuum energy in the universe should be done
as if it were a dielectric medium with an evolving refractive index in
what is known as Lifshitz theory (Lifshitz 1954; Landau, Lifshitz &
Pitaevskii 1980). Applied to cosmology, the Lifshitz vacuum energy
turns out to have the same order of magnitude as the measured
cosmological constant ! (Leonhardt 2019).

In this paper, we compare the predictions of Lifshitz theory with
astronomical data. We also formulate the theory such that it can be
taken up by astronomers. Lifshitz theory in cosmology has not been
designed to alleviate the Hubble tension, but we show that the most
naive choice of its coupling parameter fits the SH0ES value (Riess
et al. 2021) with perfect precision. We also find that the theory is
consistent with the Pantheon type Ia supernova (SN Ia) data at the
same level or slightly better than the !CDM model, that it agrees with
the measured baryon acoustic oscillations (BAO) and does not lead
to deviations from the measured CMB spectra within the accuracy of
the cosmic parameters. There are still many opportunities for further
analysis, but the findings reported here already show that Lifshitz
cosmology is a serious contender for a realistic explanation of dark
energy, rooted in established physics.

2 L I F S H I T Z T H E O RY I N C O S M O L O G Y

2.1 Background

Most of our universe is empty space. Yet, this ‘emptiness’ is far from
being ‘nothingness.’ According to the modern view of quantum field
theory (QFT), the universe is filled with quantum fields in at least their
ground state – also known as the vacuum state. Since the early days

C© The Author(s) 2021.
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
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meeting report
COSMOLOGY

Tensions between the early and late Universe
A Kavli Institute for Theoretical Physics workshop in July 2019 directed attention to the Hubble constant 
discrepancy. New results showed that it does not appear to depend on the use of any one method, team or source. 
Proposed solutions focused on the pre-recombination era.

Nearly a century of cosmological 
research has led us to a standard 
model of cosmology, the Λ cold  

dark matter model, or ΛCDM, with its  
six free parameters and several ansatzes. 
This model is dominated by dark 
components (energy and matter) with still 
uncertain physics. With some simplifying 
assumptions about the uncertain bits, the 
version of the model calibrated on physics 
prior to recombination (63% dark matter, 
15% photons, 10% neutrinos and 12% 
atoms) is used to predict the physical size of 
density fluctuations in the plasma — that is, 
how far sound, or any perturbation in the 
photon–baryon fluid, could have travelled 
from the beginning of the Universe to 
recombination — the sound horizon and its 
overtones, as well as the primordial baryon 
density. By comparing the fluctuation 
spectrum predicted by the model to the 
angular spectrum observed in the cosmic 
microwave background (CMB), the six 
free parameters are set and the ansatzes 
are tested. An alternative to the use of the 
CMB for setting the sound horizon may be 
derived by relating measurements of the 
primordial deuterium abundance to the 
predicted baryon density. The evolving form 
of the model (68% dark energy, 27% dark 
matter and 5% atoms) is then used to predict 
the expansion history of the Universe from 
redshift z = 1,000 to z = 0. Uncalibrated 
high-redshift type-Ia supernovae (SNe)  
and baryon acoustic oscillations (BAOs) 
provide ‘guard rails’ between z ≈ 2 and 0; 
they do not tell us if we are on the ‘right 
road’ but they make sure we do not miss 
the curves in the model’s road (for instance, 
the cosmic acceleration must be consistent 
with w = –1, where the equation of state 
parameter w is model-dependent and  
w = –1 corresponds to a cosmological 
constant) along the way. The model 
calibrated on early-Universe observations 
predicts the present-day value of several 
cosmological parameters, some of which  
can be empirically measured locally  
(for z < 1) with little or no model 
dependence. In particular, the model 
calibrated with data from the Planck mission 
predicts the Hubble constant, today’s 
expansion rate, to a remarkable  

1% precision, 67.4 ± 0.5 km s–1 Mpc–1.  
Is this whole story right?

The simplest test of this paradigm, from 
end to end, is to compare the absolute scale 
provided through the application of early-
Universe physics (for example, the physical 
size of the sound horizon used to interpret 
the CMB and BAOs) to the absolute scale 
measured by the Hubble constant in the 
local, late-time Universe. Because the 
Universe has only one true scale, and  
in light of the uncertain physics of the  
dark sector, comparing the two calibrated  
at opposite ends of the Universe’s history  
is natural and potentially insightful.  
(To determine whether a measurement 
is truly derived from the ‘early’ or ‘late’ 
Universe it is necessary to trace back its 
chain of calibration — a useful check is to 
determine whether or not it depends on, for 
example, the number of neutrinos assumed 
in the standard model.) During 15–17 
July 2019, 108 attendees of the workshop 
‘Tensions between the Early and the Late 
Universe’ gathered at the Kavli Institute 
for Theoretical Physics (KITP) to consider 
growing tensions between the early-
Universe predictions and the late-Universe 
measurements and how they might be 
explained. More details about the workshop, 
including online presentations, are available 
here: https://www.kitp.ucsb.edu/activities/
enervac-c19.

The early Universe
The early Universe probes were discussed  
at length. The two key questions were:  
(1) What kind of cross-checks can be used  
to identify unknown systematic errors that 
may affect the predictions for H0? (2) Is 
there any hint of tension in early-Universe 
data that may perhaps reveal systematic 
errors or shortcomings of the standard  
six-parameter model?

Several talks addressed the first question. 
In addition to the well-known small 
difference between the inference of H0 from 
low- and high-angular-resolution Planck 
and Wilkinson Microwave Anisotropy Probe 
data, all of the early-Universe data seem to 
be consistently predicting a low value of H0. 
The Atacama Cosmology Telescope (ACT) 
and the South Pole Telescope (SPT) are in 

agreement with Planck, and any CMB data 
used to calibrate the sound horizon and 
subsequently the BAOs leads to a low H0  
of ~67–68.5 km s–1 Mpc–1, even without 
Planck. A completely independent and 
statistically consistent value of H0 can be 
obtained by using light-element abundances 
to calibrate the sound horizon, BAOs and 
other lower-redshift probes.

As far as the second question is 
concerned, some curiosities among high-
redshift probes at the level of ~2σ were 
identified. The most compelling ones 
appear to be the departure from unity of 
the nuisance parameter Alens, which is used 
to match CMB anisotropies (temperature 
fluctuations around z ≈ 1,000) and  
CMB-lensing data (from the deflection of 
CMB photons by gravitational masses,  
such as clumps of dark matter). If 
confirmed, this departure from unity 
represents evidence that something is  
not well understood in the relationship 
between CMB anisotropies and the growth 
of structure, and thus could perhaps hint  
at new physics. The other 2σ curiosities  
that were discussed were: (1) the tension 
between the two-dimensional constraints  
in the S8–Ωm plane inferred from the 
CMB and those inferred by cosmic shear 
data, where S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0:3

p

I
, with σ 

the present-day linear theory root-mean-
square amplitude of the matter fluctuation 
spectrum averaged in spheres of radius  
8 h–1 Mpc, and Ωm is the present-day matter 
density in units of the critical density; 
(2) the tension between the cosmological 
parameters inferred from the BAO signal 
in galaxies at z < 1 and those of the Ly-α 
line of hydrogen at higher redshifts; and 
(3) drifts of the model parameters with the 
CMB fluctuation scale used to determine 
the model. The statistical errors of these 
methods are expected to shrink in the  
next few years, and will reveal whether  
the tension is a statistical fluke of the kind 
that one may expect when considering 
of order dozens of true and nuisance 
parameters, or whether it is indicative of 
some yet-to-be discovered systematic  
or new physics. Nevertheless, many 
wondered if a solution to the late- versus 
early-Universe discrepancy may be more 
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Observed Hubble constant is consistent with Lifshitz theory
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Abstract
The simplest ΛCDM model provides a good !t to a large span of cosmolog-
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Written in the stars
“Some say the world will end in fire; 
Some say in ice…”*

What is the fate of the Universe? Probably it will end in ice if we are to believe this year’s Nobel Laureates. 
They have carefully studied several dozen exploding stars, called supernovae, in faraway galaxies and 
have concluded that the expansion of the Universe is speeding up. 

The discovery came as a complete surprise even to the Nobel Laureates themselves. What they saw would be 
like throwing a ball up in the air, and instead of having it come back down, watching as it disappears more 
and more rapidly into the sky, as if gravity could not manage to reverse the ball’s trajectory. Something simi-
lar seemed to be happening across the entire Universe.

The growing rate of the expansion implies that the Universe is being pushed apart by an unknown form of 
energy embedded in the fabric of space. This dark energy makes up a large part of the Universe, more than 
70 %, and it is an enigma, perhaps the greatest in physics today. No wonder, then, that cosmology was shaken 
at its foundations when two different research groups presented similar results in 1998.

Saul Perlmutter headed one of the two research teams, the Supernova Cosmology Project, initiated a decade 
earlier in 1988. Brian Schmidt headed another team of scientists, which towards the end of 1994 launched 
a competing project, the High-z Supernova Search Team, in which Adam Riess was to play a crucial role.
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Figure 1. The world is growing. The expansion of the Universe began with the Big Bang 14 billion years ago, but slowed down during the 
first several billion years. Eventually it started to accelerate. The acceleration is believed to be driven by dark energy, which in the begin-
ning constituted only a small part of the Universe. But as matter got diluted by the expansion, the dark energy became more dominant.
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