Seminar Schedule

Find upcoming seminars below. All talks are also announced via our mailing list and are also available via a google calendar (ical). Previous talks as well as a copy of the slides will be made available for the foreseeable future on the VIDEOS page.

Thu 2021-12-02 17:00 CET

Quantum Science Seminar #60: Quantum Photonics
Christine Silberhorn
U. Paderborn
Paderborn — Germany
Quantum photonics using non-linear integrated optics and pulsed light
Quantum technologies promise a change of paradigm for many fields of application, for example in communication systems, in high-performance computing and simulation of quantum systems, as well as in sensor technology. They can shift the boundaries of today’s systems and devices beyond classical limits and seemingly fundamental limitations. The use of complex photonic systems, which comprise multiple optical modes as well as nonclassical light, has been proposed for various quantum applications over the last decades and illustrate the versatility of photonic systems. However, their implementation often requires advanced setups of high complexity, which poses considerable challenges on the experimental side. Here we present three differing approaches to advance current experimental approaches for multi-dimensional photonic quantum systems: non-linear integrated quantum optics, pulsed temporal modes and time-multiplexing. Non-linear integrated quantum devices with multiple channels enable the combinations of different functionalities, such as sources and fast electro- optic modulations, on a single compact monolithic structure. Pulsed photon temporal modes are defined as field orthogonal superposition states and can constitute a high dimensional quantum system. They occupy only a single spatial mode and thus they can be efficiently used in single-mode fibre communication networks. Finally, time-multiplexed quantum walks are a versatile tool for the implementation of a highly flexible simulation platform with many modes and dynamic control of the underlying graph structures and coherence properties of the quantum network.